精英家教网 > 高中数学 > 题目详情
8.某数学兴趣小组有3名男生和2名女生,从中任选出2名同学参加数学竞赛,那么对立的两个事件是(  )
A.恰有1名男生与恰有2名女生B.至少有1名男生与全是男生
C.至少有1名男生与至少有1名女生D.至少有1名男生与全是女生

分析 互斥事件是两个事件不包括共同的事件,对立事件首先是互斥事件,再就是两个事件的和事件是全集,由此规律对四个选项逐一验证即可得到答案.

解答 解:选取的两名学生一男一女时,恰有1名男生和恰有2女生,故A个事件是互斥事件,但不是对立事件;
选取两名学生均为男生时,至少有1名男生和全是男生同时发生,故B个事件不是互斥事件,更不可能是对立事件;
选取的两名学生一男一女时,至少有1名男生和至少有1名女生,故C个事件不是互斥事件,更不可能是对立事件;
至少有1名男生和全是女生,两个事件不可能同时发生,且两个事件的和事件是全集,故D中两个事件是对立事件,
故选:D

点评 本题考查互斥事件与对立事件,解题的关键是理解两个事件的定义及两事件之间的关系.属于基本概念型题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.若实数x,y,m满足|x-m|>|y-m|,则称x比y远离m.
(Ⅰ)比较log20.6与20.6哪一个远离0;
(Ⅱ)已知函数f(x)的定义域$D=\left\{{x\left|{x≠\frac{kπ}{2}+\frac{π}{4},k∈Z}\right.}\right\}$,任取x∈D,f(x)等于sinx和cosx中远离0的那个值,写出函数f(x)的解析式以及f(x)的三条基本性质(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知两条不同的直线m,n和两个不同的平面α,β,给出下面四个命题:
①若m∥α,n∥β,且α∥β,则m∥n;
②若m∥α,n⊥β,且α⊥β,则m∥n;
③若m⊥α,n∥β,且α∥β,则m⊥n;
④若m⊥α,n⊥β,且α⊥β,则m⊥n;
其中正确的个数有(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知全集为R,集合A={x|x2-2x>0},B={x|1<x<3},则∁RB=(-∞,1]∪[3,+∞),A∩B=(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l的方程为mx-y+1-m=0,圆C的方程为x2+(y-1)2=5.
(Ⅰ)证明:直线l与圆C相交;
(Ⅱ)设直线l与圆C交于两点A,B,求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{f(x+1),x<0}\end{array}\right.$,则f(-$\frac{8}{9}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.大气能见度和雾霾、降雨等天气情况密切相关,而大气能见度直接影响车辆的行车速度V(千米/小时)和道路的车流密度M(辆/千米),经有关部门长时间对某道路研究得出,大气能见度不足100米时,为保证安全,道路应采取封闭措施,能见度达到100米后,车辆的行车速度V和大气能见度x(米)近似满足函数V(x)$\left\{\begin{array}{l}{\frac{1}{10}x+10,100≤x<800}\\{90,x≥800}\end{array}\right.$,已知道路的车流密度M(辆/千米)是大气能见度x(米)的一次函数,能见度为100时,车流密度为160;当能见度为500时,车流密度为为80.
(1)当x≥100时,求道路车流密度M与大气能见度x的函数解析式;
(2)当车流量F(x)的解析式(车流量=行车速度×车流密度);
(3)当大气能见度为多少时,车流密度会达到最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知多面体ABCDEF中,ABCD为菱形,∠ABC=60°,AE⊥平面ABCD,AE∥CF,AB=AE=1,AF⊥BE.
(Ⅰ)求证:平面BAF⊥平面BDE;
(Ⅱ)求二面角B-AF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=ax3-2x2在x=-1时取得极值,则f(1)等于(  )
A.-$\frac{10}{3}$B.-$\frac{2}{3}$C.0D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案