精英家教网 > 高中数学 > 题目详情

【题目】下面是某市环保局连续30天对空气质量指数的监测数据:

61 76 70 56 81 91 55 91 75 81

88 67 101 103 57 91 77 86 81 83

82 82 64 79 86 85 75 71 49 45

(Ⅰ)完成下面的频率分布表;

(Ⅱ)完成下面的频率分布直方图,并写出频率分布直方图中的值;

(Ⅲ)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间内的概率.

【答案】(Ⅰ)答案见解析;(Ⅱ)答案见解析;(Ⅲ)0.7.

【解析】试题分析:

(1)由题意计算相应的频数和频率即可补全频率分布表;

(2)完成频率分布直方图,结合区间的频率为,可得

(3)由题意列出所有可能的事件,然后结合题意和古典概型的计算公式可得这两天中至少有一天空气质量指数在区间内的概率是0.7.

试题解析:

(Ⅰ)如下图所示

(Ⅱ)如下图所示

由已知,空气质量指数在区间的频率为,所以

(Ⅲ)设表示事件“在本月空气质量指数大于等于91的这些天中随机选取两天,这两天中至少有一天空气质量指数在区间内”,

由己知,质量指数在区间内的有3天,

记这三天分别为

质量指数在区间内的有2天,

记这两天分别为

则选取的所有可能结果为:

基本事件数为10.

事件“至少有一天空气质量指数在区间内”的可能结果为:

基本事件数为 7,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆轴交于两点,过点的圆的切线为是圆上异于的一点,垂直于轴,垂足为的中点,延长分别交

1)若点,求以为直径的圆的方程,并判断是否在圆上;

2)当在圆上运动时,证明:直线恒与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在透明塑料制成的长方体容器内灌进一些水(未满),现将容器底面一边固定在底面上,再将容器倾斜,随着倾斜度的不同,有下列四种说法:

①水的部分始终呈棱柱状;

②水面四边形的面积为定值;

③棱始终与水面平行;

④若 ,则是定值.

则其中正确命题的个数的是( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某校高一(1)班全体男生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分,据此解答如下问题:

(1)求该班全体男生的人数及分数在之间的男生人数;

(2)根据频率分布直方图,估计该班全体男生的数学平均成绩(同一组中的数据用该组区间的中点值代表);

(3)从分数在中抽取两个男生,求抽取的两男生分别来自的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求函数的单调区间

2若关于的不等式上有解求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经测算,某型号汽车在匀速行驶过程中每小时耗油量 (升)与速度 (千米/每小时) 的关系可近似表示为:.

)该型号汽车速度为多少时,可使得每小时耗油量最低?

)已知两地相距120公里,假定该型号汽车匀速从地驶向地,则汽车速度为多少时总耗油量最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若是奇函数,且在区间上是增函数,求的值;

(Ⅱ)设,若在区间内有两个不同的零点 ,求的取值范围,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,且函数的最小正周期为

(1)若函数处取到最小值,求函数的解析式;

(2)若将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将向左平移个单位,得到的函数图象关于轴对称,求函数的单调递增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率是,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率是,甲、乙两台机床加工的零件都是一等品的概率是.

(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;

(2)从甲、乙、丙三台机床加工的零件中各取一个检验,求至少有一个一等品的概率;

查看答案和解析>>

同步练习册答案