精英家教网 > 高中数学 > 题目详情
2.函数y=Asin(ωx+φ)的图象相邻的最高点和最低点的坐标分别为($\frac{5π}{12}$,3),($\frac{11π}{12}$,-3),函数的解析式是f(x)=3sin(2x-$\frac{π}{3}$).

分析 由题意可求A,T,利用周期公式可求ω,利用点($\frac{5π}{12}$,3)在函数图象上,由五点作图法可得φ,从而可求
函数的解析式.

解答 解:∵函数过点($\frac{5π}{12}$,3),($\frac{11π}{12}$,-3),
∴A=3,
由题意,得$\frac{1}{2}$T=$\frac{11π}{12}$-$\frac{5π}{12}$=$\frac{π}{2}$,
∴T=π,
∴$\frac{2π}{ω}$=π,
∴ω=2,
∴f(x)=3sin(2x+φ),
将点P($\frac{5π}{12}$,3)代入,得:3sin($\frac{5π}{6}$+φ)=3,由五点作图法可得:$\frac{5π}{6}$+φ=$\frac{π}{2}$,
∴φ=-$\frac{π}{3}$,
∴f(x)=3sin(2x-$\frac{π}{3}$).
故答案为:f(x)=3sin(2x-$\frac{π}{3}$).

点评 本题重点考查了三角函数的图象与性质、由y=Asin(ωx+φ)的部分图象确定其解析式,考查了数形结合思想的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如果点P(x,y)满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0}\\{x+y-2≤0}\end{array}\right.$,则$\frac{y}{x+3}$的最大值是(  )
A.0B.$\frac{1}{4}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知tanα=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,则tan(α-β)=(  )
A.-1B.$\frac{1}{7}$C.1D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知sinα-cosα=-$\frac{{\sqrt{5}}}{5}$,则tanα的值为(  )
A.2或-2B.$\frac{1}{2}$或-$\frac{1}{2}$C.$\frac{1}{2}$或2D.-$\frac{1}{2}$或-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a∈Z,且0≤a<13,若512016+a能被13整除,则a=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=|x-m|+2m.
(1)若不等式f(x)≤2的解集为单元素集,求实数m的值;
(2)在(1)的条件下,若存在x0∈R,使得f(x0)+f(-x0)≤a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数g(x)=$\frac{2}{x}$+x2+2alnx在[1,2]上是减函数,则a的取值范围为(  )
A.(-∞,0)B.(-∞,0]C.(-∞,-$\frac{7}{2}$]D.(-∞,-$\frac{7}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-a|+|${\frac{1}{2}$x+1|的最小值为2.
(Ⅰ)求实数a的值;
(Ⅱ)若a>0,求不等式f(x)≤4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过原点的直线与椭圆交于A、B两点,点F为椭圆的右焦点,且满足AF⊥BF,设∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{6}$],则椭圆离心率e的取值范围为(  )
A.[$\sqrt{3}$-1,$\frac{2}{3}$]B.[$\sqrt{3}$-1,$\frac{\sqrt{6}}{3}$]C.[2-$\sqrt{3}$,$\frac{2}{3}$]D.[2-$\sqrt{3}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

同步练习册答案