精英家教网 > 高中数学 > 题目详情
已知随机变量X的分布列如下表
X12345
P 
1
10
 
3
10
a 
1
10
 
1
10
(1)求a;
(2)求P(X≥4)和P(2≤X<5).
考点:离散型随机变量及其分布列
专题:概率与统计
分析:(1)由随机变量X的分布列的性质得:
1
10
+
3
10
+a+
1
10
+
1
10
=1
,由此能求出a.
(2)P(X≥4)=P(X=4)+P(X=5),P(2≤X<5)=P(X=2)+P(X=3)+P(X=4).
解答: 解:(1)由随机变量X的分布列的性质得:
1
10
+
3
10
+a+
1
10
+
1
10
=1

解得a=
2
5

(2)P(X≥4)=P(X=4)+P(X=5)=
1
5

P(2≤X<5)=P(X=2)+P(X=3)+P(X=4)=
4
5
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是基础题,解题时要认真审题,在历年高考中都是必考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

算术符号\和MOD分别用来取商和余数,比如5\2的值是2,5MOD2的值是1.通过如图程序:若输入a=333,k=5,则输出的b为(  )
A、2313B、3132
C、93D、2332

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=lnx+ax+
x2
2
为其定义域上的增函数,则实数a的取值范围是(  )
A、(0,+∞)
B、[0,+∞)
C、(-1,0)
D、[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),如果存在给定的实数对(a,b),使得对f(x),f(a+x),f(a-x)有定义的所有x都有f(a+x)+f(a-x)=b恒成立,则称f(x)为“п-函数”.
(Ⅰ)判断函数f1(x)=2sinx,f2(x)=lnx是否是“п-函数”;
(Ⅱ)若f3(x)=tanx是一个“п-函数”,求出所有满足条件的有序实数对(a,b)(参考公式tan(α+β)=
tanα+tanβ
1-tanαtanβ
,tan(α-β)=
tanα-tanβ
1+tanαtanβ
);
(Ⅲ)若定义域为R的函数f(x)是“п-函数”,且存在满足条件的有序实数对(0,1)和(1,2).当x∈(0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点,M是椭圆上异于A,B的任意一点,直线l是椭圆的右准线.
(1)若椭圆C的离心率为
1
2
,直线l:x=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰好过原点,求椭圆C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一点.
(1)求证:平面EBD⊥平面SAC;
(2)假设SA=4,AB=2,求点A到平面SBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,m∈R+,并且a<b,用分析法证明:
a+m
b+m
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的方程为:4x2+y2-8xcosθ-4ysin2θ-sin22θ=0.
(1)判断这是什么曲线?θ变化时它的形状、大小是否发生变化?
(2)当θ取一切实数时,求曲线C的中心的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
],求
(Ⅰ)
a
b
及|
a
+
b
|;
(Ⅱ)求函数f(x)=
a
b
-|
a
+
b
|的最大值和最小值.

查看答案和解析>>

同步练习册答案