分析 通过角的终边所在直线,求解cosα和tanα即可.
解答 解:角α的顶点为坐标原点,始边在x轴正半轴上,若α角的终边在直线y=-2x上,且sinα>0,
可得tanα=-2,sinα=$\sqrt{\frac{{sin}^{2}α}{{sin}^{2}α+{cos}^{2}α}}$=$\sqrt{\frac{{tan}^{2}α}{{tan}^{2}α+1}}$=$\sqrt{\frac{4}{4+1}}$=$\frac{2\sqrt{5}}{5}$.
cosα=-$\sqrt{1-{sin}^{2}α}$=-$\frac{\sqrt{5}}{5}$
故答案为:-$\frac{\sqrt{5}}{5}$;-2.
点评 本题考查三角函数的定义,直线的斜率 关系,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0] | B. | [2,4] | C. | [4,+∞) | D. | {4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 16 | C. | 32 | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com