精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=|2x-1|
(1)解关于x的不等式f(x)≥3;
(2)若方程f(x)+|x-2|=ax在[1,+∞)上有解,求实数a的取值范围.

分析 (1)关于x的不等式即|2x-1|≥3,由此求得不等式的解集.
(2)f(x)+|x-2|=$\left\{\begin{array}{l}{3x-3,x≥2}\\{x+1,1≤x<2}\end{array}\right.$,分类讨论,分别求得a的范围,再取并集,即得所求.

解答 解:(1)关于x的不等式f(x)≥3,即|2x-1|≥3,即2x-1≥3 或2x-1≤-3.
求得x≥2 或x≤-1,故要求的不等式的解集为{x|x≥2 或x≤-1 }.
(2)f(x)+|x-2|=$\left\{\begin{array}{l}{3x-3,x≥2}\\{x+1,1≤x<2}\end{array}\right.$,当x≥2时,方程即3x-3=ax,即a=3-$\frac{3}{x}$,$a∈[\frac{3}{2},3)$.
当1≤x<2时,方程即 x+1=ax,即 a=1+$\frac{1}{x}$,∴a∈($\frac{3}{2}$,2].
综上,a∈[$\frac{3}{2}$,3).

点评 本题主要考查绝对值不等式的解法,体现了等价转化和分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.用合适的方法证明下面两个问题:
(1)设a≥b>0,求证:2a3-b3≥2ab2-a2b;
(2)设a>0,b>0,且a+b=10,求证:$\sqrt{1+3a}$+$\sqrt{1+3b}$≤8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆O:x2+y2=r2(r>0),与y轴交于M、N两点且M在N的上方.若直线y=2x+$\sqrt{5}$与圆O相切.
(1)求实数r的值;
(2)若动点P满足PM=$\sqrt{3}$PN,求△PMN面积的最大值.
(3)设圆O上相异两点A、B满足直线MA、MB的斜率之积为$\frac{\sqrt{3}}{3}$.试探究直线AB是否经过定点,若经过,请求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,若$C=\frac{π}{3}$,且$\frac{a}{{cos{A}}}=\frac{b}{{cos{B}}}$,则角A=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知复数z与(z-3)2+12i都是纯虚数,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若sin($\frac{π}{3}$-α)=$\frac{4}{5}$,则cos(2α+$\frac{π}{3}$)=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若关于x的不等式|x-a|≤3的解集为{x|-1≤x≤5},则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某同学对本地[30,55]岁的爱好阅读的人群随机抽取n人进行了一次调查,得到如下年龄统计表,其中不超过40岁的共有60人.
(1)求出n,a的值;
(2)从[45,55)岁年龄段爱好阅读的人中采用分层抽样法抽取6人,然后从这6人之中选2人为社区阅读大使,求选出的两人年龄均在[45,50)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设m、n为两条不重合的直线,α,β为两个不重合的平面,下列命题中正确的是(  )
A.若m、n与α所成的角相等,则m∥nB.若n∥α,m∥β,α∥β,则m∥n
C.若n?α,m?β,m∥n,则α∥βD.若n⊥α,m⊥β,α⊥β,则n⊥m

查看答案和解析>>

同步练习册答案