分析 根据向量的数量积公式和向量的模的计算得到f(λ)=4$\sqrt{(2-2cosA){λ}^{2}+(2cosA-2)λ+1}$,对cosA=0和cosA≠0,两种情况加以讨论,根据二次函数的性质求出最值.
解答 解:由题意可知:丨$\overrightarrow{AB}$丨=4,丨$\overrightarrow{AC}$丨=2,
|λ$\overrightarrow{AB}$+(2-2λ)$\overrightarrow{AC}$|=$\sqrt{[λ\overrightarrow{AB}+(2-2λ)\overrightarrow{AC}]^{2}}$=$\sqrt{{λ}^{2}丨\overrightarrow{AB}{丨}^{2}+2λ(2-2λ)\overrightarrow{AB}•\overrightarrow{AC}+(2-2λ)^{2}丨\overrightarrow{AC}{丨}^{2}}$,
=$\sqrt{16{λ}^{2}+4(2-2λ)^{2}+2λ(2-2λ)×2×4cosA}$,
=4$\sqrt{(2-2cosA){λ}^{2}+(2cosA-2)λ+1}$,
=f(λ),
当cosA=0时,f(λ)=4$\sqrt{2{λ}^{2}-2λ+1}$=4$\sqrt{2(λ-\frac{1}{2})^{2}+\frac{1}{2}}$≥2$\sqrt{2}$,
由2$\sqrt{3}$>2$\sqrt{2}$,
∴A=$\frac{π}{2}$,
则建立直角坐标系,A(0,0),B(4,0),C(0,2),
设P(x,0),(0<x<4),
$\overrightarrow{PB}$=(4-x,0),$\overrightarrow{PC}$=(-x,2),
∴$\overrightarrow{PB}$•$\overrightarrow{PC}$=-x(4-x)=x2-4x=(x-2)2-4,
∴当x=2时,$\overrightarrow{PB}$•$\overrightarrow{PC}$取最小值,最小值为:-4,
当cosA≠0时,f(λ)=4$\sqrt{(2-2cosA)(λ-\frac{1}{2})^{2}+\frac{1+cosA}{2}}$≥4$\sqrt{\frac{1+cosA}{2}}$=2$\sqrt{3}$,
整理得:1+cosA=$\frac{3}{2}$,解得:cosA=$\frac{1}{2}$,
∴A=$\frac{π}{3}$,
∴建立直角坐标系,A(0,0),B(4,0),C(1,$\sqrt{3}$),
设P(x,0),(0<x<4),
$\overrightarrow{PB}$=(4-x,0),$\overrightarrow{PC}$=(1-x,$\sqrt{3}$),
则$\overrightarrow{PB}$•$\overrightarrow{PC}$=(4-x)•(1-x)=x2-5x+4=(x-$\frac{5}{2}$)2-$\frac{9}{4}$,
当x=$\frac{5}{2}$时,$\overrightarrow{PB}$•$\overrightarrow{PC}$取最小值,最小值为:-$\frac{9}{4}$,
故$\overrightarrow{PB}$•$\overrightarrow{PC}$的最小值-$\frac{9}{4}$,
故答案为:-$\frac{9}{4}$.
点评 本题考查了向量的数量积公式和向量的模的计算以及二次函数的性质,关键时分类讨论,考查了学生的运算能力,转化能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 3 | 4 | 5 | 6 | 7 |
| y | 4 | a+b-4 | -0.5 | 0.5 | -2 |
| A. | 增加1.4个单位 | B. | 减少1.4个单位 | C. | 增加1.2个单位 | D. | 减少1.2个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“?x0∈R,${x_0}^2-{x_0}≤0$”的否定为“?x∈R,x2-x>0” | |
| B. | 命题“在△ABC中,A>30°,则$sinA>\frac{1}{2}$”的逆否命题为真命题 | |
| C. | 若非零向量$\overrightarrow a$、$\overrightarrow b$满足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,则$\overrightarrow a$与$\overrightarrow b$共线 | |
| D. | 设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的充分必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 第一周 | 第二周 | 第三周 | 第四周 | 第五周 | |
| A型数量(台) | 10 | 10 | 15 | A4 | A5 |
| B型数量(台) | 10 | 12 | 13 | B4 | B5 |
| C型数量(台) | 15 | 8 | 12 | C4 | C5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a3+a8 | B. | a10 | C. | a3+a5+a7 | D. | a2+a7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{2}{5}$ | C. | -$\frac{2}{5}$ | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com