精英家教网 > 高中数学 > 题目详情
19.如果点M(sinθ,cosθ)位于第二象限,那么角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由第二象限点的坐标符号可得$\left\{\begin{array}{l}{sinθ<0}\\{cos>0}\end{array}\right.$,再由三角函数的符号可得角θ所在的象限.

解答 解:∵点M(sinθ,cosθ)位于第二象限,∴$\left\{\begin{array}{l}{sinθ<0}\\{cos>0}\end{array}\right.$,
∴角θ所在的象限是第四象限,
故选:D.

点评 本题考查三角函数值的符号:一全正、二正弦、三正切、四余弦,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)-f(x)g′(x)>0,且f(x)=axg(x)(a>0a≠1),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$.若数列$\frac{f(n)}{g(n)}$的前n项和小于126,则n的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义在R上的函数f(x)既是奇函数,又是周期函数,且周期为$\frac{3}{2}$.当$x∈[0,\frac{3}{4}]$时,$f(x)=\frac{a+sinπx}{{\sqrt{2}+cosπx}}-bx$(a、b∈R),则 f(1)+f(2)+…+f(100)的值为$-\frac{{\sqrt{2}}}{2}+\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=3sin(\frac{x}{2}+\frac{π}{6})+3$
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)若f(2α)-3=$\sqrt{2}$,求$cos(\frac{π}{3}-α)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,-1),则向量$\frac{1}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow{b}$=(  )
A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设扇形的弧长为2cm,面积为4cm2,则扇形的圆心角的弧度数是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,若椭圆C上的一动点到右焦点的最短距离为$2-\sqrt{2}$,且右焦点到直线$x=\frac{a^2}{c}$的距离等于短半轴的长,已知P(4,0),过P的直线与椭圆交于M、N两点
(Ⅰ)求椭圆C的方程   
(Ⅱ)求$\overrightarrow{OM}•\overrightarrow{ON}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列{an}中,a1>0,公差d<0,Sn为其前n项和,对任意自然数n,若点(n,Sn)在以下4条曲线中的某一条上,则这条曲线应是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}是公差d>0的等差数列,其中a1、a2是方程x2-3x+2=0的两根.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记${b_n}={2^{a_n}}+{(-1)^n}{a_n}$,求数列{bn}的前100项和T100

查看答案和解析>>

同步练习册答案