精英家教网 > 高中数学 > 题目详情
12.若焦点在x轴上的椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{m}$=1的离心率e=$\frac{3}{5}$,则m的值是(  )
A.15B.16C.17D.18

分析 根据椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{m}$=1的焦点在x轴上,求出a的值,根据离心率e求出c的值,从而求出m的值.

解答 解:∵椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{m}$=1的焦点在x轴上,
∴a2=25,
∴a=5;
又∵椭圆的离心率e=$\frac{3}{5}$,
∴$\frac{c}{a}$=$\frac{3}{5}$
∴c=3;
∴m=a2-c2=16.
故选:B.

点评 本题考查了椭圆的标准方程与几何性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{\begin{array}{l}{log_x}4,x>0\\{2^{kx-1}},x≤0\end{array}\right.$,若f(2)=f(-2),则k=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在正四面体ABCD中,有如下四个命题:①AB⊥CD;②该四面体外接球的半径与内切球半径之比为2:1;③分别取AB,BC,CD,DA的中点E,F,G,H并顺次连结所得四边形是正方形;④三组对棱中点的连线段交于一点并被该点平分.则其中为真命题的序号为①③④.(填上你认为是真命题的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l:y=a(x-1)与圆C:(x+1)2+(y+a)2=1交于A、B两点.
(1)若△ABC为正三角形,求a的值;
(2)设P(0,$\sqrt{3}$),Q是圆C上一动点,当点P到直线l的距离最大时,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{25}$+$\frac{y^2}{9}$=1的两个焦点为F1,F2,P为椭圆上一点,∠F1PF2
(1)求椭圆的长轴长,短轴长,顶点,离心率.
(2)求证:$S_{△{F_1}P{F_2}}$=9tan$\frac{θ}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在边长为2的正方体ABCD-A1B1C1D1中,P、Q分别为棱AB、A1D1的中点,M、N分别为面BCC1B1和DCC1D1上的点,一质点从点P射向点M,遇正方体的面反射(反射服从光的反射原理),反射到点N,再经平面反射,恰好反射至点Q,则三条线段PM、MN、NQ的长度之和为(  )
A.$\sqrt{22}$B.$\sqrt{21}$C.2$\sqrt{5}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.指数函数f(x)=ax+1的图象恒过定点(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=cos($\sqrt{3}$x+φ)-$\sqrt{3}$sin($\sqrt{3}$x+φ)为奇函数,则φ可以取的一个值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$-\frac{π}{6}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.球的体积与其表面积的数值相等,则球的表面积等于(  )
A.πB.C.16πD.36π

查看答案和解析>>

同步练习册答案