精英家教网 > 高中数学 > 题目详情
设A={x∈R|-1<x<3},B={x∈R|x>a},若A?B,求a的取值范围.
考点:集合的包含关系判断及应用
专题:集合
分析:因为A?B,且B={x∈R|x>a},得a≥1,从而得到求解.
解答: 解:∵A?B,
∵A={x∈R|-1<x<3},B={x∈R|x>a},
∴a≤-1,
∴a的取值范围为(-∞,1].
点评:本题重点考查集合之间的包含关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果函数f(x)=sin(ωx+
π
6
)(ω>0)的最小正周期为π,则ω的值为(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数 f(x)=
4x+k•2x+1
4x+2x+1
.若对任意的实数x1,x2,x3,不等式f(x1)+f(x2)>f(x3)恒成立,则实数k的取值范围是(  )
A、0<k≤3
B、1≤k≤4
C、-
1
2
≤k≤3
D、-
1
2
≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,a),圆:x2+y2=4.
(1)若过点A的圆的切线只有一条,求a的值及切线方程;
(2)若过点A且在两坐标轴上截距相等的直线与圆相切,求a的值及切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
169
+
y2
144
=1上是否存在一点P到右焦点的距离为5,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={x|x2-x-6<0},Q={2a≤x≤a+3}.
(1)若P∪Q=P,求实数a的取值范围;
(2)若P∩Q=∅,求实数a的取值范围;
(3)若P∩Q={x|0≤x<3},求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明题:(
C
0
n
2+(C
 
1
n
2+…+(C
 
n
n
2=
2n!
n!n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x|x-a|+b,x∈R.
(Ⅰ)当a=1,b=0时,判断f(x)的奇偶性,并说明理由;
(Ⅱ)当a=1,b=1时,若f(2x)=
5
4
,求x的值;
(Ⅲ)若b<-1,且对任何x∈[0,1]不等式f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的是
 

(1)若
a
b
是共线向量,
b
c
是共线向量,则
a
c
是共线向量;
(2)已知
a
=(sinθ,
1+cosθ
b
=(1,
1-cosθ
),其中θ∈(π,
2
),则
a
b

(3)函数f(x)=tan
x
2
与函数f(x)=
1-cosx
sinx
是同一函数;
(4)tan70°•cos10•(1-
3
tan20°)=1.

查看答案和解析>>

同步练习册答案