精英家教网 > 高中数学 > 题目详情
设Sn为等差数列{an}的前n项和,S11=22,an-5=30,Sn=320,则n的值是
 
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:利用等差数列的通项公式、前n项和公式即可得出.
解答: 解:∵数列{an}是等差数列,且S11=22,an-5=30,Sn=320,
S11=11a1+
11×10
2
d
=22,化为a1+5d=2.
由an-5=a1+(n-5-1)d=an-5d=30,
将上两式相加可得:a1+an=32.
∵Sn=320,∴
n(a1+an)
2
=320,
32n
2
=320
,解得n=40.
故答案为:40.
点评:本题考查了等差数列的通项公式、前n项和公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)设x,y为正数,求(x+y)(
1
x
+
4
y
)
的最小值,并写出取得最小值的条件.
(2)设a>b>c,若
1
a-b
+
1
b-c
n
a-c
恒成立,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(2x+1)+kx(k为常数)是偶函数.
(1)求k的值;
(2)设g(x)=log2((
2
x+2+a)+log2
2
2
x,当f(x)=g(x)时,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=2x-
a
2x
的图象向右平移2个单位后得曲线C1,将函数y=g(x)的图象向下平移2个单位后得曲线C2,C1与C2关于x轴对称.若F(x)=
f(x)
a
+g(x)
的最小值为m且m>2+
7
,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意θ∈R,|sinθ-2|+|sinθ-3|≥a+
2
a
恒成立,则实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在R上的增函数,数列{xn}是一个公差为2的等差数列,且满足f(x8)+f(x9)+f(x10)+f(x11)=0.则x2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有
 
人.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={x|x2-5x-6<0},T={x||x+2|≤3},则S∩T=(  )
A、{x|-5≤x<-1}
B、{x|-5≤x<5}
C、{x|-1<x≤1}
D、{x|1≤x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

x
+
y
≤k 
x+y
对一切x,y∈R都成立,求k的最小值.

查看答案和解析>>

同步练习册答案