精英家教网 > 高中数学 > 题目详情
12.数列{an+1-2an}的前n项和为Sn=3n,且a1=1,则an=2n+1-3.

分析 通过递推关系得an+1-2an=Sn+1-Sn=3,变形后构造等比数列{an+3},从而得到结论.

解答 解:∵Sn+1-Sn=3(n+1)-3n=3,
∴an+1-2an=3,
∴an+1+3=2(an+3),
又∵a1=1,∴a1+3=4,
即数列{an+3}是以4为首项,以2为公比的等比数列,
所以an+3=4×2n-1=2n+1
从而an=2n+1-3,
故答案为:2n+1-3.

点评 本题考查数列的通项公式,递推关系,通过对表达式的变形构造一个新的等比数列是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知关于x的不等式ax2-x-a+1>0,若a∈R,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某环境保护部门对某处的环境状况用“污染指数”来监测,据监测,该处的“污染指数”与附近污染源的强度成正比,且与距离成反比,比例系数分别为常数k1、k2(k1>0,k2>0),现已知相距36km的A、B两家化工厂(污染源)的污染强度分别为1和25,它们连线段上任意一点C处的污染指数y等于两化工厂对该处的“污染指数”之和,设AC=x(km).
(1)试将y表示为x的函数,并指出定义域;
(2)确定A、B连线段上何处的“污染指数”最小,并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用数学归纳法证明等式1(n2-12)+2(n2-22)+…+n(n2-n2)=$\frac{1}{4}$n4-$\frac{1}{4}$n2对一切正整数n都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x2+x-2=2,求x-x-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,△P′AB是边长为$\sqrt{3}$+1的等边三角形,P′C=P′D=$\sqrt{3}$-1,现将△P′CD沿边CD折起至PCD将四棱锥P-ABCD,且PC⊥BD.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,一个直径AB=2的半圆,过点A作这个圆所在平面的垂线,在垂线上取一点S,使AS=AB,C为半圆上的一个动点,M、N分别在SB、SC上,且AN⊥SC,AM⊥SB.
(1)证明:AN⊥BC;
(2)证明:SB⊥面ANM;
(3)求三棱锥S-AMN体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}中,公差d>0,等比数列{bn}中,b1>0,公比q>0且q≠1,若an-a1>logabn-logab1(n>1,n∈N,a>0,a≠1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某玩具厂生产甲、乙两种儿童玩具,其质量按测试指示划分:指示大于或等于85为合格品,小于85为次品,现随机抽取这两种玩具个100件进行检测,检测结果统计如下:
 测试指示[75,80)[80,85)[85,90)[90,95)[95,100)
 玩具甲 8 22 30 32 8
 玩具乙 7 18 40 29 6
(1)试分别估计玩具甲,玩具乙为合格品的概率
(2)生产一件玩具甲,若是合格品可盈利80圆,若是次品则亏损15元,生产一件玩具乙,若是合格品可盈利50圆,若是次品则亏损10元,在(1)的前提下,①记X为生产1件玩具甲和1件玩具乙所得的总利润,求随机变量X的分布列和数学期望.②求生产5件玩具乙所获得的利润不少于140元的概率.

查看答案和解析>>

同步练习册答案