精英家教网 > 高中数学 > 题目详情
指数函数f(x)=ax(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2
 
f(x1+x2).(填“>”,“<”或“=”)
考点:指数函数的图像与性质
专题:函数的性质及应用
分析:利用指数的运算法则,推导出f(x1)f(x2)与f(x1+x2)的关系.
解答: 解:∵对于指数函数f(x)=ax(a>0,a≠1),
任意取x1、x2∈R,
有f(x1)f(x2)=ax1ax2
=ax1+x2
=f(x1+x2);
故答案为:=.
点评:本题考查了指数函数的运算与性质的问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线L过点P(2,1)且与L1:4x-3y=0的夹角为45°,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=2-|x|为偶函数;
②函数y=1是周期函数;
③函数f(x)=2x-x2的零点有2个;
④函数g(x)=|log2 x|-(
1
2
x在(0,+∞)上恰有两个零点x1,x2且x1•x2<1.
其中真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
1
7
.现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取…直到袋中的球取完即终止.若摸出白球,则记2分,若摸出黑球,则记1分.每个球在每一次被取出的机会是等可能的.用ξ表示甲四次取球获得的分数之和.
(Ⅰ)求袋中原有白球的个数;
(Ⅱ)求随机变量ξ的概率分布列及期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下推断中,m,n是直线,α,β是平面,则所有正确的命题有
 
(写出序号).
α⊥β
m⊥β
⇒m∥α

m⊥β
m∥n
⇒n⊥β

α∥β
m⊥β
⇒m⊥α

α⊥β
m?β
⇒m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

设f-1(x)是函数f(x)=
1
2
(ax-a-x)(a>1)的反函数,则使f-1(x)>1成立的x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
OA
=(3,1),
OB
=(2,4),|
BC
|=1,点C在OA上的射影为点D,则|
OD
|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

中心在坐标原点,焦点在y轴上的双曲线的渐近线过点P(2,1),其离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的前n项和为Sn,有下列命题:
(1)若数列{an}的极限存在但不为零,则数列{Sn}的极限一定不存在;
(2)无穷数列{S2n}、{S2n-1}的极限均存在,则数列{Sn}的极限一定存在;
(3)若{an}是等差数列(公差d≠0),则S1•S2•…•Sk=O的充要条件是a1•a2•…•ak=O;
(4)若{an}是等比数列,则S1•S2•…•Sk=O(k≥2)的充要条件是an+an+1=0.
其中,错误命题的序号是(  )
A、(1)(2)
B、(2)(3)
C、(3)(4)
D、(1)(4)

查看答案和解析>>

同步练习册答案