分析 (1)由S不为空集得m≥0,(P∪S)⊆P得S⊆P.分别化简S,P即可得出.
(2)由题意可知:P=S.即可得出.
解答 解:(1)由S不为空集得m≥0,(P∪S)⊆P得S⊆P.
S={x||x-1|≤m}={x|1-m≤x≤1+m},P={x|x2-2x-3≤0}={x|-1≤x≤3}…4’
∴$\left\{\begin{array}{l}-1≤1-m\\ 1+m≤3\end{array}\right.⇒m≤2$,∴{m|0≤m≤2}…6’
(2)由题意可知:P=S.
由(1)可得$\left\{\begin{array}{l}-1=1-m\\ 1+m=3\end{array}\right.⇒m=2$…10’
∴存在,当m=2时,满足条件…12’
点评 本题考查了简易逻辑的判定方法、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\frac{3}{2}$x | B. | y=±$\frac{{\sqrt{3}}}{2}$x | C. | y=±3x | D. | y=±$\sqrt{3}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=ex | B. | $y=\frac{1}{x^2}$ | C. | $y=x+\frac{1}{x}$ | D. | y=cosx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{{\sqrt{2}}}{2}]$ | B. | $[\frac{{\sqrt{2}}}{2},1)$ | C. | $(0,\frac{1}{2})$ | D. | $[\frac{1}{2},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为π | |
| B. | 函数f(x)图象关于直线x=$\frac{π}{3}$对称 | |
| C. | 函数f(x)的图象可由g(x)=2sin2x-1的图象向右平移$\frac{π}{6}$个单位得到 | |
| D. | 函数f(x)在区间$[0,\frac{π}{4}]$上是增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com