精英家教网 > 高中数学 > 题目详情
17.平面直角坐标系xOy中,抛物线y2=2x的焦点为F,设M是抛物线上的动点,则$\frac{{|{MO}|}}{{|{MF}|}}$的最大值是$\frac{2\sqrt{3}}{3}$,此时|MF|=$\frac{13}{12}$.

分析 设M(m,n)到抛物线y2=2x的准线x=-$\frac{1}{2}$的距离等于d,由抛物线的定义可得$\frac{|MO|}{|MF|}$=$\frac{|MO|}{d}$,化简为$\sqrt{1+\frac{m-\frac{1}{4}}{{m}^{2}+m+\frac{1}{4}}}$,令m-$\frac{1}{4}$=t,利用基本不等式可求得最大值,结合抛物线的定义即可求|MF|的值.

解答 解:焦点F($\frac{1}{2}$,0),设M(m,n),则n2=2m,m>0,设M到准线x=-$\frac{1}{2}$的距离等于d,
则由抛物线的定义得$\frac{|MO|}{|MF|}$=$\frac{|MO|}{d}$=$\frac{\sqrt{{m}^{2}{+n}^{2}}}{m+\frac{1}{2}}$=$\sqrt{\frac{{m}^{2}+2m}{{m}^{2}+m+\frac{1}{4}}}$=$\sqrt{1+\frac{m-\frac{1}{4}}{{m}^{2}+m+\frac{1}{4}}}$,
令m-$\frac{1}{4}$=t,
依题意知,m>0,
若t>0,
则$\frac{m-\frac{1}{4}}{{m}^{2}+m+\frac{1}{4}}$=$\frac{t}{{t}^{2}+\frac{3}{2}t+\frac{9}{16}}$=$\frac{1}{t+\frac{\frac{9}{16}}{t}+\frac{3}{2}}$≤$\frac{1}{2×\frac{3}{4}+\frac{3}{2}}$=$\frac{1}{3}$,
∴tmax=$\frac{1}{3}$,此时${(\frac{|MO|}{d})}_{max}$=$\sqrt{1+\frac{1}{3}}$=$\frac{2\sqrt{3}}{3}$;
若-$\frac{1}{4}$<t<0,y=t+$\frac{\frac{9}{16}}{t}$+$\frac{3}{2}$单调递减,
故y<-$\frac{1}{4}$-$\frac{9}{4}$+$\frac{3}{2}$=-1,$\frac{1}{t+\frac{\frac{9}{16}}{t}+\frac{3}{2}}$∈(-1,0);
综上所述,${(\frac{|MO|}{d})}_{max}$=$\frac{2\sqrt{3}}{3}$.
此时m-$\frac{1}{4}$=$\frac{1}{3}$,则m=$\frac{1}{3}+\frac{1}{4}$=$\frac{7}{12}$,
则|MF|=d=m-(-$\frac{1}{2}$)=$\frac{7}{12}$$+\frac{1}{2}$=$\frac{13}{12}$,
故答案为:$\frac{2\sqrt{3}}{3}$,$\frac{13}{12}$

点评 本题考查抛物线的定义、简单性质,基本不等式的应用,体现了换元的思想,把$\frac{MO}{MF}$化为$\sqrt{1+\frac{m-\frac{1}{4}}{{m}^{2}+m+\frac{1}{4}}}$ 是解题的关键和难点,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若实数x,y满足x2<y2,则下列不等式成立的是(  )
A.x<yB.-x<yC.$\frac{1}{x}$<$\frac{1}{y}$D.|x|<|y|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知p:方程x2-mx+1=0有两个不等的正实根,q:方程4x2+4(m-2)x+1=0无实根.若p或q 为真,p且q为假.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设点A(0,1),B(2,-1),点C在双曲线M:$\frac{{x}^{2}}{4}$-y2=1上,则使△ABC的面积为3的点C的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在四棱锥P-ABCD中,△PAD为正三角形,平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB=2AD=4.
(Ⅰ)求证:平面PCD⊥平面PAD;
(Ⅱ)求三棱锥P-ABC的体积;
(Ⅲ)在棱PC上是否存在点E,使得BE∥平面PAD?若存在,请确定点E的位置并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若坐标原点到抛物线x=m2y2的准线的距离为2,则m=±$\frac{\sqrt{2}}{4}$;焦点坐标为(2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等比数列{an}的各项均为正数,且a5a6+a4a7=20,则lga1+lga2+…+lga10=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a∈R,“1,a2,16为等比数列“是“a=±2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}中,a1=1,且an+1=2an+3×5n,求an

查看答案和解析>>

同步练习册答案