精英家教网 > 高中数学 > 题目详情
13.求下列函数的导数:
(1)y=2xsin(2x+5)
(2)y=$\frac{{x}^{3}-1}{sinx}$.

分析 利用求导公式分别求导.

解答 解:(1)y'=(2x)'sin(2x+5)+2xsin'(2x+5)=2sin(2x+5)+4xcos(2x+5);
(2)y'=$\frac{({x}^{3}-1)'sinx-({x}^{3}-1)sin'x}{si{n}^{2}x}$=$\frac{3{x}^{2}sinx-({x}^{3}-1)cosx}{si{n}^{2}x}$=$\frac{3{x}^{2}}{sinx}-\frac{({x}^{3}-1)cosx}{si{n}^{2}x}$.

点评 本题考查了基本函数求导公式以及导数的运算法则的运用;熟记公式和法则是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.△ABC满足AB=AC,BC=2,G为△ABC的重心,则$\overrightarrow{BG}•\overrightarrow{BC}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式-6x2-5x+1≤0的解集是(-∞.-1]∪[$\frac{1}{6}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.复数z满足|z|=|z+2+2i|,则|z-1+i|的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,在三棱柱ABC-A1B1C1中,BB1⊥底面A1B1C1,A1B1⊥B1C1且A1B1=BB1=B1C1,D为AC的中点.
(Ⅰ)求证:A1B⊥AC1
(Ⅱ)在直线CC1上是否存在一点E,使得A1E⊥平面A1BD,若存在,试确定E点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=x3+sinx,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值(  )
A.一定大于0B.一定等于0C.一定小于0D.正负都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.记a=sin(cos2015°),b=sin(sin2015°),c=cos(sin2015°),d=cos(cos2015°),则a、b、c、d中最大的是(  )
A.aB.bC.cD.d

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点M(4,3)作斜率为2的直线与双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)相交于点A、B两点,若点M是线段AB的中点,则双曲线E的离心率为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{15}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若将锐角A为60°,边长为a的菱形ABCD沿对角线BD折成60°的二面角,则A与C之间的距离为$\frac{\sqrt{3}}{2}$a.

查看答案和解析>>

同步练习册答案