精英家教网 > 高中数学 > 题目详情
3.“证明:通项公式为an=cqn(cq≠0)的数列{an}是等比数列.”所依据的大前提是等比数列的定义.

分析 用三段论形式推导一个结论成立,大前提应该是结论成立的依据,由数列{an}的通项公式为an=cqn(cq≠0),得到数列{an}是等比数列,可得到大前提为等比数列的定义

解答 解:将推理过程通项公式为an=cqn(cq≠0)的数列{an}是等比数列写成三段论为:
大前提:从第二项开始,后一项与前一项的比值为定值的数列为等比数列(等比数列的定义),
小前提:数列{an}的通项公式为an=cqn(cq≠0),满足等比数列的定义,
结论:数列{an}是等比数列
故大前提是:等比数列的定义,
故答案为:等比数列的定义

点评 本题考查用三段论形式推导一个命题成立,要求我们填写大前提,这是常见的一种考查形式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=3sin$\frac{π}{6}$x+2.
(1)五点法画出函数f(x)在一个周期上的图象;
(2)y=sinx的图象经过怎样的变换可以得到f(x)的图象;
(3)当x∈[-3,0]时,求f(x)的最值及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=sinx-cosx-ax(0<x<π,常数a∈R),且f(x)同时存在极大值点和极小值点.
(1)求a的取值范围;
(2)记f(x)的极大值为M,设实数b,若?λ∈[b+1,b+e](e是自然对数的底数)且?μ∈[b+1,b+e],使得λ+ln(λ-b)<M<μ+ln(μ-b),求实数b的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.锐角三角形的三边分别为3,5,x,则x的范围是(4,$\sqrt{34}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.将函数y=sin(2x+φ)的图象沿x轴向左平移$\frac{π}{8}$个单位后,得到一个偶函数的图象,则φ的取值为φ=kπ+$\frac{π}{4}$,k∈z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>0,b>0,$\frac{1}{a}$+$\frac{4}{b}$=1,则当a+b取得最小值时,ab=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某师范大学地理学院决定从n位优秀毕业生(包括x位女学生,3位男学生)中选派2位学生到某贫困山区的一所中学担任第三批顶岗实习教师,每一位学生被选派的机会是相同的.
(1)若选派的2位学生中恰有1位女学生的概率为$\frac{3}{5}$,试求出n与x的值;
(2)在(1)的条件下,记X为选派的2位学生中女学生的人数,写出X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.有7名队员参加两场比赛,每场90分钟,前4名每人上场总时间都能被7整除,后3名每人上场总时间都能被13整除,每场换人次数不限,且在比赛的任何时刻,场上有且只有一名运动员,按每人上场总时间算,有多少种情况?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明:若a,b>0,则 lg$\frac{a+b}{2}$≥$\frac{lga+lgb}{2}$.

查看答案和解析>>

同步练习册答案