精英家教网 > 高中数学 > 题目详情
17.在复平面内,复数Z=$\frac{3-i}{1-i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:∵Z=$\frac{3-i}{1-i}$=$\frac{(3-i)(1+i)}{(1-i)(1+i)}=\frac{4+2i}{2}=2+i$,
∴复数Z=$\frac{3-i}{1-i}$对应的点的坐标为(2,1),位于第一象限.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.这是一个共享的时代,共享资源、共享网络、共享知识…,2016年底,共享单车在国内火爆起来.某公司为了解运营共享单车的收益情况,随机调查了五个城市租用共享单车时间x(单位:千小时)与收益y(千元)的相关数据,如表为抽样数据:
 x 1614 12 10 
 y 11 9 8 6 5
(Ⅰ)请根据上表数据画出散点图
(Ⅱ)根据散点图判断,y=bx+a与y=c$\sqrt{x}$+d哪一个适宜作为y关于x的回归方程类型(给出判断即可,不必说明理由);根据判断结果及表中数据,求出y关于x的回归方程.(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.要得到函数y=cos2x的图象,只需将函数y=sin(2x+$\frac{π}{3}$)的图象(  )
A.向左平行移动$\frac{π}{12}$个单位长度B.向左平行移动$\frac{π}{6}$个单位长度
C.向右平行移动$\frac{π}{12}$个单位长度D.向右平行移动$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.从1,2,3,4,5五个数字中任意取出两个不同的数做加法,其和为6的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列命题中正确的命题的序号是②
①命题“?x∈R,使得x2-1<0”的否定是“?x∈R”均有x2-1<0”
②命题“若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”
③命题“若a,b∈R,那么log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b“是“3a<3b”的必要不充分条件
④命题“若x,y∈R,cosx=cosy“是“x=y”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若0≤α≤π,tanα>$\sqrt{3}$,则α的取值范围是($\frac{π}{3}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.底面半径为2$\sqrt{3}$,母线长为4的圆锥的体积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线经过点A(-3,2),B(3,m3),且倾斜角α=45°,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知动点P(x,y)在不等式组$\left\{\begin{array}{l}{x+y≤4}\\{x-y≥0}\\{y≥0}\end{array}\right.$表示的平面区域内部及其边界上运动,则z=-$\frac{1}{2}$x+y的最大值是(  )
A.1B.3C.$\frac{5}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案