| A. | [-$\sqrt{2}$,$\sqrt{2}$] | B. | [0,2$\sqrt{2}$] | C. | [-2$\sqrt{2}$,2$\sqrt{2}$] | D. | [-2,2] |
分析 问题转化为求直线l与圆x2+y2=22有公共点时,a的取值范围,利用数形结合思想能求出结果.
解答
解:∵直线l:x-y+a=0,点A(-2,0),B(2,0),
直线l上存在点P满足AB⊥BP,
∴如图,直线l与圆x2+y2=22有公共点,
∴圆心O(0,0)到直线l:x-y+a=0的距离:
d=$\frac{|a|}{\sqrt{2}}$≤2,
解得$-2\sqrt{2}≤a≤2\sqrt{2}$.
∴实数a的取值范围为[-2$\sqrt{2}$,2$\sqrt{2}$].
故选:C.
点评 本题考查实数的取值范围的求法,考查直线方程、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2k-1 | B. | 2k-1 | C. | 2k | D. | 2k+1 |
查看答案和解析>>
科目:高中数学 来源:2017届陕西汉中城固县高三10月调研数学(理)试卷(解析版) 题型:解答题
选修4-5:不等式选讲
设函数
.
(1)当
时,求不等式
的解集;
(2)若
对任意
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com