精英家教网 > 高中数学 > 题目详情
20.满足条件{1,2}⊆M⊆{1,2,3,4,5}的集合M的个数是8.

分析 根据已知中M满足条件{1,2}⊆M⊆{1,2,3,4,5},列举出所有满足条件的集合M,可得答案.

解答 解:若M满足条件{1,2}⊆M⊆{1,2,3,4,5},
则M可能为:
{1,2},{1,2,3},{1,2,4},{1,2,5},
{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}
共8个,
故答案为:8

点评 本题考查的知识点是集合的包含关系判断及应用,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,B(-3,0),C(3,0),直线AB,AC的斜率之积$\frac{4}{9}$,求顶点A的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△OBC中,点A是线段BC的中点,点D是线段OB的一个靠近B的三等分点,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AO}$=$\overrightarrow{b}$.
(1)用向量$\overrightarrow{a}$与$\overrightarrow{b}$表示向量$\overrightarrow{OC},\overrightarrow{CD}$;
(2)若$\overrightarrow{OE}=\frac{3}{5}\overrightarrow{OA}$,判断C、D、E是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=\sqrt{3+ax}$在区间(-2,4)内单调递减,则实数a的取值范围是(  )
A.a<0B.$-\frac{3}{4}<a<0$C.$-\frac{3}{2}≤a<0$D.$-\frac{3}{4}≤a<0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=f(x)在点(2,1)处的切线与直线3x-y-2=0平行,则f′(2)等于(  )
A.1B.-1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)的定义域是[-1,1],则函数g(x)=f(2x-1)lg(1-x)的定义域是(  )
A.[0,1]B.(0,1)C.[0,1)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项和为Sn,且满足a1=2,anan+1=2(Sn+1)(n∈N*).
(1)求a2017的值;
(2)求数列{an}的通项公式;
(3)若数列{bn}满足b1=1,bn=$\frac{1}{{{a_n}\sqrt{{a_{n-1}}}+{a_{n-1}}\sqrt{a_n}}}$(n≥2,n∈N*),求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=5,且|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-8x+7<0},B={x|x2-2x-a2-2a<0}
(1)当a=4时,求A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案