精英家教网 > 高中数学 > 题目详情
12.已知数列{an}满足a1=1,对所有正整数n≥2都有a1•a2•a3•…•an=n2,则an=$\left\{\begin{array}{l}{1,n=1}\\{(\frac{n}{n-1})^{2},n≥2}\end{array}\right.$.

分析 在原数列递推式中,取n=n-1得另一递推式,作商后求得数列的通项公式.

解答 解:由a1•a2•a3•…•an=n2,得
a1•a2•a3•…•an-1=(n-1)2(n≥2),
两式作商得:${a}_{n}=(\frac{n}{n-1})^{2}$(n≥2),
∴${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{(\frac{n}{n-1})^{2},n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{1,n=1}\\{(\frac{n}{n-1})^{2},n≥2}\end{array}\right.$.

点评 本题考查数列递推式,考查了由数列递推式求数列的通项公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某中学为了解初三年级学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下:

已知该项目评分标准为:

(1)求上述20名女生得分的中位数和众数;
(2)若男生投掷距离大于等于86分米为优秀,从上述20名男生中,随机抽取2名,求抽取的2名男生中至少有1名优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,正四面体S-ABC中,其棱长为2.
(1)求该几何体的体积;
(2)已知M,N分别是棱AB和SC的中点.求直线BN和直线SM所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某一总体有5位成员,其身高分别为(单位:cm)172,174,175,176,178,今随机抽样3人,则抽到平均身高等于总体平均身高的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
参考数据($\sum_{i=1}^{5}$xi2=145,$\sum_{i=1}^{5}$yi2=13500,$\sum_{i=1}^{5}$xiyi=1380.)$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$
(1)求线性回归方程;
(2)试预测广告费支出为10百万元时,销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过点P(-$\sqrt{3}$,1),倾斜角为120°的直线方程为$\sqrt{3}$x+y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,用一块矩形木板紧贴一墙角围成一个直三棱柱空间堆放谷物.已知木板的长BC紧贴地面且为4米,宽BE为2米,墙角的两堵墙面所成二面角为120°,且均与地面垂直,如何放置木板才能使这个空间的体积最大,最大体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点M,N是平面区域$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{2x+y≤7}\end{array}\right.$内的两点,O是坐标原点,则tan∠MON的最大值为$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数y=$\sqrt{3-4x+{x}^{2}}$的定义域为M.
(1)求M和函数的值域;
(2)当x∈M时,关于x的方程4x-2×2x=b(b∈R)有两个不等实数根,求b的取值范围.

查看答案和解析>>

同步练习册答案