精英家教网 > 高中数学 > 题目详情
已知函数y=2sin(ωx+φ)(ω>0,|φ|<
π
2
)的图象的一部分如图所示,则(  )
A、ω=2,φ=
π
6
B、ω=2,φ=-
π
6
C、ω=2,φ=
π
3
D、ω=2,φ=-
π
3
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值.
解答: 解:由函数的周期可得
ω
=2(
6
-
π
3
),∴ω=2.
再根据五点法作图可得 2×
π
3
+φ=π,求得φ=
π
3

故选:C.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知-
π
2
<α<
π
2
,-
π
2
<β<
π
2
,且tanα,tanβ是方程x2+3
3
x+4=0的两实根,则α+β=(  )
A、
π
3
B、-
3
C、
π
3
3
D、
π
3
或-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=ax2+bx+c,不等式f(x)>0的解集是{x|x1<x<x2},f(0)>0,则(  )
A、f(x1+x2)>0
B、f(x1+x2)<0
C、f(x1+x2)=0
D、不能确定f(x1+x2)的符号

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=-
3
4
,且α为第二象限的角,则sinα的值等于(  )
A、
3
5
B、-
3
5
C、
4
5
D、-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

“α为锐角”是“sinα>0”的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

下列不等式正确的是(  )
A、若a>b,则a•c>b•c
B、若a•c2>b•c2,则a>b
C、若a>b,则
1
a
1
b
D、若a>b,则a•c2>b•c2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+ax2-4x+4的图象关于点(0,4)对称.
(Ⅰ)求a的值;
(Ⅱ)求f(x)的极值;
(Ⅲ)求f(x)在区间[0,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

从我校4名男生和3名女生中任选3人参加孝感市迎五四演讲比赛.设随机变量X表示所选3人中女生的人数.
(1)求X的分布列;
(2)求“所选3人中女生人数X≤1”的概率.

查看答案和解析>>

同步练习册答案