精英家教网 > 高中数学 > 题目详情
10.为了了解潮州市居民月用电情况,抽查了该市100户居民月用电量(单位:度),得到频率分布直方图如下:根据下图可得这100户居民月用电量在〔150,300〕的用户数是(  )
A.70B.64C.48D.30

分析 根据频率分布直方图,利用频率、频数与样本容量的关系进行解答即可.

解答 解:根据频率分布直方图,得;
这100户居民月用电量在〔150,300〕的频率为(0.0060+0.0044+0.0024)×50=0.64,
∴这100户居民月用电量在〔150,300〕的用户数是100×0.64=64.
故选:B.

点评 本题考查了频率分布直方图的应用问题,也考查了频率=$\frac{频数}{样本容量}$的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a、b、c∈R且a>0,b>0)为奇函数,当x>0时,f(x)有最小值2,且f(x)的递增区间是[$\frac{1}{2}$,+∞),试求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=$\frac{\sqrt{3}-i}{1+\sqrt{3}i}$,则|z|=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线M:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$两个焦点为分别为${F_1}(-\sqrt{3},0),{F_2}(\sqrt{3},0)$,过点F2的直线l与该双曲线的右支交于M、N两点,且△F1MN是等边三角形,则以点F2为圆心,与双曲线M的渐近线相切的圆的方程为(  )
A.${(x-\sqrt{3})^2}+{y^2}=2$B.${(x-\sqrt{3})^2}+{y^2}=4$C.${(x-\sqrt{3})^2}+{y^2}=1$D.${(x-\sqrt{3})^2}+{y^2}=\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC中,设三个内角A,B,C所对的边长分别为a,b,c,且$a=1,b=\sqrt{3},A=\frac{π}{6}$,则c=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以坐标轴为对称轴,以原点为顶点且过圆(x-1)2+(y+3)2=1的圆心的抛物线的方程是(  )
A.y=3x2或y=-3x2B.y=3x2C.y2=-9x或y=3x2D.y=-3x2或y2=9x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=sin(2x+\frac{π}{4})+cos(2x-\frac{π}{4}),x∈R$.
(1)求$f(\frac{π}{2})$的值;
(2)求函数f(x)的值域和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设m>1,在约束条件$\left\{\begin{array}{l}{y≥x}\\{y≤mx}\\{x+y≤1}\end{array}\right.$下,目标函数z=x+my的最大值等于2,则m=$1+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了了解某学段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如右图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.
(1)将频率当作概率,请估计该学段学生中百米成绩在[16,17)内的人数以及所有抽取学生的百米成绩的中位数(精确到0.01秒);
(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.

查看答案和解析>>

同步练习册答案