精英家教网 > 高中数学 > 题目详情
若△PAB是圆C:(x-2)2+(y-2)2=4的内接三角形,且PA=PB,∠APB=120°,则线段AB的中点的轨迹方程为(  )
A、(x-2)2+(y-2)2=1
B、(x-2)2+(y-2)2=2
C、(x-2)2+(y-2)2=3
D、x2+y2=1
考点:轨迹方程
专题:计算题,直线与圆
分析:设线段AB的中点为D,求出CD=1,可得线段AB的中点的轨迹是以C为圆心,1为半径的圆,即可得出结论.
解答: 解:设线段AB的中点为D,则
由题意,PA=PB,∠APB=120°,∴∠ACB=120°,
∵OB=2,
∴CD=1,
∴线段AB的中点的轨迹是以C为圆心,1为半径的圆,
∴线段AB的中点的轨迹方程是:(x-2)2+(y-2)2=1,
故选:A.
点评:本题考查轨迹方程,考查圆的内接三角形的性质,确定线段AB的中点的轨迹是以C为圆心,1为半径的圆是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E、F分别是A1A,C1D1的中点,G为正方形BCC1B1的中心,则四边形AEFG在该正方体的各个面的投影不可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,向量
m
=(a+b,sinA-sinC)
,向量
n
=(c,sinA-sinB)
,且
m
n

(Ⅰ)求角B的大小;
(Ⅱ)设BC中点为D,且AD=
3
;求a+2c的最大值及此时△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,BE、CF分别为钝角△ABC的两条高,已知AE=1,AB=3,CF=4
2
,则BC边的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足约束条件
x≥1
y≥x
3x+2y≤15
,则w=4x•2y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥0
y≥0
x+y≤2
,则z=4x+y的取值范围是(  )
A、[0,2]
B、[0,8]
C、[2,8]
D、[2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

运行右面的程序框图,如果输入的x的值在区间[-2,3]内,那么输出的f(x)的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0)),(a>0,b>0,O为坐标原点),若A,B,C三点共线,则a与b的关系式为
 
1
a
+
2
b
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.
x-10245
f(x)121.521
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a最多有4个零点.
其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案