精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
-2x+b
2x+1+a
是奇函数.
(1)求a,b的值;并判定函数f(x)单调性(不必证明).
(2)若对于任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
考点:函数恒成立问题,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)由题意知f(0)=0求出b,再由奇函数的定义求出b;
(2)利用奇函数的性质转化为一元二次不等式,借助与一元二次函数的关系进行判断.
解答: 解:∵定义域为R的函数f(x)=
-2x+b
2x+1+a
是奇函数,
f(0)=0
f(1)=f(-1)

-20+b
20+1+a
=0
-21+b
21+1+a
=
-21+b
2-1+1+a

化简,得
-1+b
2+a
=0
-2+b
4+a
=-
-
1
2
+b
1+a

解得,
a=2
b=1

∴a的值是2,b的值是1.
∴f(x)是R上的减函数;
(3)由f(t2-2t)+f(2t2-k)<0,得f(t2-2t)<-f(2t2-k),
∵f(x)是奇函数,∴f(t2-2t)<f(k-2t2),
由(2)知,f(x)是减函数,∴原问题转化为t2-2t>k-2t2
即3t2-2t-k>0对任意t∈R恒成立,
∴△=4+12k<0,解得k<-
1
3

所以实数k的取值范围是:k<-
1
3
点评:本题考查函数的奇偶性、单调性及不等式恒成立问题,定义是解决单调性问题的基本方法,而恒成立问题往往转化为函数最值问题解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若
S4
S2
=3,则
S6
S4
的值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log
1
2
(2x-x2)的单调递增区间为(  )
A、[1,+∞)
B、(-∞,1]
C、[1,2)
D、(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

正数x,y满足
1
x
+
9
y
=1.
(1)求xy的最小值.
(2)求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:在定义域D内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
1
x
是否属于集合M?说明理由;
(2)若函数f(x)=k•2x+b属于集合M,试求实数k和b满足的条件;
(3)设函数f(x)=lg
a
x2+2
属于集合M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+
π
6
),ω∈R,且ω≠0.
(Ⅰ)若f(x)的图象经过点(
π
6
,2),且0<ω<3,求ω的值;
(Ⅱ)在(Ⅰ)的条件下,若函数g(x)=mf(x)+n(m>0),当x∈[0,
π
2
]时,g(x)的值域为[-5,1],求m,n的值;
(Ⅲ)若函数h(x)=f(x-
π
)在[-
π
3
π
3
]上是减函数,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
1
2
x2-2x+
8
3
,求f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=4,DC=6,BC=2.
(1)若P是腰DC的中点,求|
PA
+3
PB
|的值;
(2)在腰DC上是否存在点P,使∠APB=90°.若存在,求出点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA⊥平面ABCD,AB=
3
,BC=1,PA=2.
(1)M是AB上一点,且AM=
3
3
,F是PC上一点,则当
PF
FC
为何值时,BF∥平面PDM?
(2)E为PD的中点,在侧面PAB内找一点N,使NE⊥平面PAC,并求NE与平面PAD所成角的大小.

查看答案和解析>>

同步练习册答案