精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2x,求斜率为k的直线截抛物线的弦的中点的轨迹方程.
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设斜率为k的弦与抛物线交于A(x1,y1)、B(x2,y2),于是有k=
y2-y1
x2-x1
,且k≠0,y12=2x1,①y22=2x2,②设AB的中点M(x,y),②-①即可求得斜率为k的直线截抛物线的弦的中点的轨迹方程.
解答: 解:设斜率为k的弦与抛物线交于A(x1,y1)、B(x2,y2),
则k=
y2-y1
x2-x1
,且k≠0,y12=2x1y22=2x2
y22-y12=2(x2-x1),即(y2+y1)(y2-y1)=2(x2-x1),
设AB的中点M(x,y),
则y2+y1=2y,
∴2y=
2
k
(k≠0),
整理得:y=
1
k
(k≠0).
∴抛物线y2=2xy的一组斜率为k的平行弦的中点的轨迹方程是y=
1
k
(k≠0).
点评:本题考查抛物线的简单性质,考查轨迹方程的求法,考查推理与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知i为虚数单位,则复数2i(1+i)的模是(  )
A、4
B、2
2
C、3
2
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

记者在街上随机抽取10人,在一个月内接到的垃圾短信条数统计的茎叶图如图:
(Ⅰ)计算样本的平均数及方差;
(Ⅱ)现从10人中随机抽出2名,设选出者每月接到的垃圾短信在10条以下的人数为X,求随机变量X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
频数 5 10 15 10 5 5
赞成人数 4 6 9 6 3 4
(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某电视台举办“青工技能大赛”,比赛共设三关,第一、二关各有两个问题,两个问题全解决方可进入下一关,第三关有三个问题,只要解决其中的两个问题,则闯关成功.每过一关可依次获得100分、300分、500分的积分.小明对三关中每个问题正确解决的概率依次为
4
5
3
4
2
3
,且每个问题正确解决与否相互独立.
(Ⅰ)求小明通过第一关但未过第二关的概率;
(Ⅱ)用X表示小明的最后积分,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={1,2,3,4,5,6,7,8,9}中任取三个元素构成子集{a,b,c}
(1)求a,b,c中任意两数之差的绝对值均不小于2的概率;
(2)记a,b,c三个数中相邻自然数的组数为ξ(如集合{3,4,5}中3和4相邻,ξ=2),求随机变量ξ的分布列及其数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设a,b,c∈(0,+∞),求证:
a2
b
+
b2
c
+
c2
a
≥a+b+c;
(Ⅱ)已知a+b=1,对?a,b∈(0,+∞),
1
a
+
4
b
≥|2x-1|-|x+1|恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点,
(Ⅰ)求直线BC与A1C所成的角的度数. 
(Ⅱ)求证:A1C∥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a>0,b,c∈R),F(x)=
f(x),      x≥0
-f(-x),   x<0

(Ⅰ)若f(x)在x=-1处取得最小值为0,且f(0)=1,求F(-1)+F(2)的值;
(Ⅱ)若a=1,c=0,且|f(x)|≤1对x∈[0,1]恒成立,求b的取值范围;
(Ⅲ)若a=1,b=-2,c=0,且y=F(x)与y=-t的图象在闭区间[-1,t]上恰有一个公共点,求实数t的取值范围.

查看答案和解析>>

同步练习册答案