精英家教网 > 高中数学 > 题目详情
9.若logxy=-1,则$x+\frac{y}{2}$的最小值为$\sqrt{2}$.

分析 先根据logxy=-1得到x与y的关系,再代入到$x+\frac{y}{2}$中得到

解答 解:∵logxy=-1,
∴x-1=y,即y=$\frac{1}{x}$,
∴$x+\frac{y}{2}$=x+$\frac{1}{2x}$≥2$\sqrt{x•\frac{1}{2x}}$=$\sqrt{2}$,当且仅当x=$\frac{\sqrt{2}}{2}$时取“=”.
∴$x+\frac{y}{2}$的最小值为$\sqrt{2}$.
故答案是:$\sqrt{2}$.

点评 本题主要考查对数函数的指对互换和基本不等式的应用.基本不等式在解决函数最值中应用比较广泛,平时要注意这方面的练习.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知n∈N*,在坐标平面中有斜率为n的直线ln与圆x2+y2=n2相切,且ln交y轴的正半轴于点Pn,交x轴于点Qn,则$\lim_{x→∞}\frac{{|{{P_n}{Q_n}}|}}{{2{n^2}}}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn=n2+$\frac{1}{3}$n,求这个数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则$|{\frac{z_2}{z_1}}|$=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α,β是两个不同的平面,m,n,l是三条不同的直线,且α∩β=l,则下列命题正确的是 (  )
A.若m∥α,n∥β,则m∥n∥lB.若m∥α,n⊥l,则m⊥n
C.若m⊥α,n∥β,则n⊥lD.若m⊥α,n∥l,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-ax2-x 抛物线C:x2=y 当x∈(1,2)时 函数f(x)的图象在抛物线C的上方 求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义运算a?b为执行如图所示的程序框图输出的S值,则(2cos$\frac{5π}{3}$)?(2tan$\frac{5π}{4}$)的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,$AB=\sqrt{3}$,AC=1,∠B=30°,△ABC的面积为$\frac{{\sqrt{3}}}{2}$,则∠C=(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A,B,C是非等边锐角△ABC的三个内角,非零向量$\overrightarrow{p}$=(sinA-cosB,cosA-sinC),$\overrightarrow{q}$=(1,-1),则$\overrightarrow{p}$与$\overrightarrow{q}$的夹角是(  )
A.锐角B.钝角C.直角D.不确定

查看答案和解析>>

同步练习册答案