精英家教网 > 高中数学 > 题目详情
10.方程${log_{x-1}}({3{x^2}-7x-2})=2$的解为x=3.

分析 根据对数函数的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{{3x}^{2}-7x-2>0}\\{x-1>0}\\{x-1≠1}\\{{3x}^{2}-7x-2{=(x-1)}^{2}}\end{array}\right.$,
解得:x=3,
故答案为:x=3.

点评 本题考查了对数函数的性质,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图,函数y=|tanx|cosx(x∈[0,$\frac{π}{2}$)∪($\frac{π}{2}$,π])的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若不同两点P,Q的坐标分别为(a,b),(3-b,3-a),则线段PQ的垂直平分线的斜率为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.运行如图所示的流程图,则输出的结果S是$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,输出的S值为(  )
A.3B.-6C.10D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输出S=16,则框图中①处可以填入(  )
A.n>2B.n>4C.n>6D.n>8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示程序框图,若输入的a,b,n分别为1,2,5,则输出的N=(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数y=f(x)定义在[-1,2]上,且满足f(-$\frac{1}{2}$)<f(1),则f(x)在区间[-1,2]上是(  )
A.增函数B.减函数
C.先减后增D.无法判断其单调性

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin($\frac{π}{6}$-2x)-2sin2x+1,若f(x)=Asin(2x+φ),且A≥0,0≤φ<2π,求满足条件的A,φ.

查看答案和解析>>

同步练习册答案