精英家教网 > 高中数学 > 题目详情
13.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记mi=$\overrightarrow{A{B_2}}•\overrightarrow{A{P_i}}$(i=1,2,…,10),则m1+m2+…+m10的值为(  )
A.180B.$60\sqrt{3}$C.45D.$15\sqrt{3}$

分析 由题意可得$\overrightarrow{A{B}_{2}}⊥\overrightarrow{{B}_{3}{C}_{3}}$,然后把mi=$\overrightarrow{A{B_2}}•\overrightarrow{A{P_i}}$转化为$\overrightarrow{A{B}_{2}}•\overrightarrow{A{C}_{3}}$求得答案.

解答 解:由图可知,∠B2AC3=30°,又∠AC3B3=60°,
∴$\overrightarrow{A{B}_{2}}⊥\overrightarrow{{B}_{3}{C}_{3}}$,即$\overrightarrow{A{B}_{2}}•\overrightarrow{{B}_{3}{C}_{3}}=0$.
则${m_i}=\overrightarrow{A{B_2}}•\overrightarrow{A{P_i}}=\overrightarrow{A{B_2}}(\overrightarrow{A{C_3}}+\overrightarrow{{C_3}{P_i}})=\overrightarrow{A{B_2}}•\overrightarrow{A{C_3}}=2\sqrt{3}×6×\frac{{\sqrt{3}}}{2}=18$,
∴m1+m2+…+m10=18×10=180.
故选:A.

点评 本题考查平面向量的数量积运算,考查了三角形中边角关系的运用,考查了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知A、B分别为曲线C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0)与x轴的左、右两个交点,直线l过点B且与x轴垂直,P为l上异于点B的点,连结AP与曲线C交于点M.
(1)若曲线C为圆,且|BP|=$\frac{2\sqrt{3}}{3}$,求弦AM的长;
(2)设N是以BP为直径的圆与线段BM的交点,若O、N、P三点共线,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.△ABC外接圆的半径为1,圆心为O,且$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO},|\overrightarrow{AB}|=\sqrt{3}|\overrightarrow{OA}|,则\overrightarrow{CA}•\overrightarrow{CB}$的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知点S(0,3),过点S作直线SM,SN与圆Q:x2+y2-2y=0和抛物线C:x2=-2py(p>0)都相切.
(1)求抛物线C和两切线的方程;
(2)设抛物线的焦点为F,过点P(0,-2)的直线与抛物线相交于A,B两点,与抛物线的准线交于点C(其中点B靠近点C),且|AF|=5,求△BCF与△ACF的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即X~N(100,a2)(a>0),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的$\frac{1}{10}$,则此次数学考试成绩在100分到110分之间的人数约为(  )
A.400B.500C.600D.800

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若数列{xn}满足:$\frac{1}{{{x_{n+1}}}}-\frac{1}{x_n}$=d(d为常数,n∈N*),则称{xn}为调和数列.已知数列{an}为调和数列,且a1=1,$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+\frac{1}{a_5}$=15.
(Ⅰ)求数列{an}的通项an
(Ⅱ)数列$\left\{{\frac{2^n}{a_n}}\right\}$的前n项和为Sn,是否存在正整数n,使得Sn≥2015?若存在,求出n的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量$\overrightarrow{{e}_{1}}$=$(\begin{array}{l}{2}\\{3}\end{array})$并有特征值λ2=-1及属于特征值-1的一个特征向量$\overrightarrow{{e}_{2}}$=$(\begin{array}{l}{1}\\{-1}\end{array})$,$\overrightarrow{α}$=$(\begin{array}{l}{-1}\\{1}\end{array})$
(Ⅰ)求矩阵M;
(Ⅱ)求M5$\overrightarrow{α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow{b}$=(5,2),则向量$\overrightarrow{a}$+$\overrightarrow{b}$=(3,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{{4}^{x}+2}$(x∈R).
(1)若数列{an}的通项公式为an=f($\frac{n}{m}$)(m∈N+,n=1,2,…,m),求数列{an}的前m项和Sm
(2)设数列{bn}满足:b1=$\frac{1}{3}$,bn+1=bn2+bn.设Tn=$\frac{1}{{b}_{1}+1}$+$\frac{1}{{b}_{2}+1}$+…+$\frac{1}{{b}_{n}+1}$.若(1)中的Sn满足对任意不小于2的正整数n,Sn<Tn恒成立,试求m的最大值.

查看答案和解析>>

同步练习册答案