精英家教网 > 高中数学 > 题目详情
7.如图,正方体ABCD-A1B1C1D1的棱长为4,M,N,E,F分别为A1D1,A1B1,C1D1,B1C1的中点,平面AMN与平面EFBD间的距离为$\frac{8}{3}$.

分析 连结A1C1交MN于P点,交EF于点Q,连结AC交BD于点O,分别连结PA、QO.由已知得四边形PAOQ为平行四边形,由此能证明平面AMN∥平面EFBD.

解答 解:连结A1C1交MN于P点,交EF于点Q,
连结AC交BD于点O,分别连结PA、QO.
∵M、N为A1B1、A1D1的中点,
∴MN∥EF.而EF?面EFBD.
∴MN∥面EFBD.∵PQ∥AO,PQ=AO
∴四边形PAOQ为平行四边形.∴PA∥QO.
而QO?平面EFBD,∴PA∥平面EFBD,
且PA∩MN=P,PA、MN?面AMN.
∴平面AMN∥平面EFBD,
∴平面AMN与平面EFBD间的距离即E到平面AMN的距离,
设E到平面AMN的距离为h,
有VA-MNE=VE-AMN,S△MNE=$\frac{1}{2}$×2×4=4,
AM=AN=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,MN=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,根据勾股定理得AG=3$\sqrt{2}$,S△AMN=$\frac{1}{2}$×3$\sqrt{2}$×2$\sqrt{2}$=6,
VA-MNE=$\frac{1}{3}$×4×4=$\frac{16}{3}$.
∴h=$\frac{3{V}_{A-MNE}}{{S}_{△AMN}}$=$\frac{16}{6}$=$\frac{8}{3}$.

点评 本题考查了空间直线的位置关系,平行垂直问题,难度适中,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=loga(x+1)+loga(3-x)(0<a<1).
(1)求函数f(x)的零点;
(2)若函数f(x)的最小值为-4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin(2x-$\frac{3π}{4}$),x∈R.
(1)指出f(x)的周期、振幅、相位;
(2)求函数f(x)的最大值,并求y取得最大值时自变量x的集合;
(3)求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a>0,b>0,a2+4b2+ab=1,则a+2b的最大值为$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.若BC边上存在两个点Q使得PQ⊥DQ.则a的取值范围是(  )
A.(1,+∞)B.[1,2)C.(2,+∞)D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2-bx(a>0)和g(x)=lnx的图象有公共点P,且在点P处的切线相同.
(Ⅰ)若点P的坐标为$(\frac{1}{e},-1)$,求a,b的值;
(Ⅱ)已知a=b,求切点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四凌锥P-ABCD而底面ABCD是矩形,侧面PAD是等腰直角三角形∠APD=90°,且平面PAD⊥平面ABCD.
(Ⅰ)求证:PA⊥PC;
(Ⅱ)在AD=2,AB=4,求三棱锥P-ABD的体积;
(Ⅲ)在条件(Ⅱ)下,求四棱锥P-ABCD外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线ax-by-2=0与曲线y=x3在点P(1,1)处的切线互相垂直,则$\frac{a}{b}$的值(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$-\frac{1}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设集合P={x|x=a+b$\sqrt{3}$,a、b∈N},对于其中任意两个元素进行加法、减法、除法(除数不能为零)的运算,其结果是否仍属于集合P,证明你的结论.

查看答案和解析>>

同步练习册答案