精英家教网 > 高中数学 > 题目详情
三个互不重合的平面,能把空间分成n个部分,则n所有可能值为
 
考点:平面的基本性质及推论
专题:空间位置关系与距离
分析:分别讨论三个平面的位置关系,根据它们位置关系的不同,确定平面把空间分成的部分数目.
解答: 解:若三个平面互相平行,则可将空间分为4部分;
若三个平面有两个平行,第三个平面与其它两个平面相交,则可将空间分为6部分;
若三个平面交于一线,则可将空间分为6部分;
若三个平面两两相交且三条交线平行(联想三棱柱三个侧面的关系),则可将空间分为7部分;
若三个平面两两相交且三条交线交于一点(联想墙角三个墙面的关系),则可将空间分为8部分;
故n等于4,6,7或8.
故答案为:4,6,7或8
点评:本题考查平面的基本性质及推论,要讨论三个平面不同的位置关系.考查学生的空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根
1
2
,则f(x)=0在区间[0,2014]内根的个数为(  )
A、1006B、1007
C、2013D、2014

查看答案和解析>>

科目:高中数学 来源: 题型:

平移双曲线x2-3y2+2x-2=0,把它的中心移到右焦点处,此时的双曲线渐近线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABO三个顶点坐标为A(1,0),B(0,2),O(0,0),P(x,y)是坐标平面内一点,且满足
AP
OA
≤0,
BP
OB
≥0,则
OP
AB
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥的高为
3
,侧棱长为
7
,求侧面上斜高(棱锥侧面三角形的高)为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x5+x+sinx,x∈R,则不等式f(x2-2)+f(x)<0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将下列不等式(组)所表示的区域标记在平面直角坐标系内:
(1)2x-y>1
(2)
x+y-1>0
x-y+1>0
x<2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且a=2
6
,sinA=
2
2
3
AB
AC
=-3
(Ⅰ)求b和c,
(Ⅱ)求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知几何体的三视图(单位:cm).
(1)在这个几何体的直观图相应的位置标出字母A,B,C,D,A1,B1,C1,D1,P,Q;
(2)求这个几何体的表面积及体积;
(3)设异面直线A1Q、PD所成角为θ,求cosθ.

查看答案和解析>>

同步练习册答案