精英家教网 > 高中数学 > 题目详情
4.已知集合A={x|lnx≤0},B={x∈R|z=x+i,$|z|≥\frac{{\sqrt{5}}}{2}$,i是虚数单位},A∩B=(  )
A.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{2},1}]$B.$[{\frac{1}{2},1}]$C.(0,1]D.[1,+∞)

分析 先分别求出集合A和B,由此利用交集定义能求出A∩B.

解答 解:∵集合A={x|lnx≤0}={x|0<x≤1},
B={x∈R|z=x+i,$|z|≥\frac{{\sqrt{5}}}{2}$,i是虚数单位}={x|x≥$\frac{1}{2}$或x$≤-\frac{1}{2}$},
∴A∩B={x|$\frac{1}{2}≤x≤1$}=[$\frac{1}{2},1$].
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知i为虚数单位,$\overline z$是复数z的共轭复数,若$z=cos\frac{2π}{3}+isin\frac{2π}{3}$,则$\overline z$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在底面为正三角形的直棱柱(侧棱垂直于底面的棱柱)ABC-A1B1C1中,AB=2,AA1=3,点D为棱BD的中点,点E为A,C上的点,且满足A1E=mEC(m∈R),当二面角E-AD-C的余弦值为$\frac{\sqrt{10}}{10}$时,实数m的值为(  )
A.1B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有(  )种.
A.510B.105C.50D.A105

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于下列表格所示的五个散点,已知求得的线性回归直线方程为$\stackrel{∧}{y}$=0.8x-155.
x197198201204205
y1367m
则实数m的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.${(x-\frac{2}{{\sqrt{x}}})^n}$的二项展开式中第五项和第六项的二项式系数最大,则各项的系数和为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若点P对应的复数z满足|z|≤1,则P的轨迹是(  )
A.直线B.线段C.D.单位圆以及圆内

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(m,-1),若$\overrightarrow a∥\overrightarrow b$,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,BC∥AD,BC=1,AD=3,AC⊥CD,且平面PCD⊥平面ABCD.
(1)求证:AC⊥PD;
(2)在线段PA上是否存在点E,使BE∥平面PCD?若存在,确定点E的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案