精英家教网 > 高中数学 > 题目详情
设变量x,y满足
x≥0
x+3y≥4
3x+y≤4
,则x2+y2的最大值为(  )
A、
16
9
B、2
C、4
D、16
考点:简单线性规划
专题:不等式的解法及应用
分析:先根据约束条件画出可行域,再利用几何意义求最值,z=x2+y2表示动点到原点的距离的平方,只需求出可行域内的动点到原点的距离最大值即可.
解答: 解:注意到目标函数所表示的几何意义是动点到原点的距离的平方,
作出
x≥0
x+3y≥4
3x+y≤4
的可行域.如图:
易知可行域内的A点时,目标函数取得最大值,
可知A点的坐标为(4,0),
代入目标函数中,可得zmax=42+02=16.
故选:D.
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若曲线f(x)=x4-x+2在其上点P处的切线与直线x+3y-1=0垂直,则点P的坐标为(  )
A、(1,0)
B、(1,2)
C、(-1,4)
D、(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

把3289化成五进制数的末位数字为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=π 
1
2
,b=logπ3,c=logπsin
π
6
,则a,b,c大小关系为(  )
A、a>b>c
B、b>c>a
C、c>a>b
D、c=a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

身高互不相同的7个学生排成一排,从中间往两边越来越矮,不同的排法有(  )
A、5040种B、720种
C、240种D、20种

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)与g(x)是定义在R上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”.若f(x)=x2-3x+4与g(x)=2x+t在[2,3]上时“密切函数”,则实数t的取值范围是(  )
A、[-3,-1]
B、[-
23
4
,-
5
4
]
C、[-
5
4
,-1]
D、[-3,-
5
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)
x-1
,x≤1
1+log2x,x>1
,则满足f(x)≤2的x的取值范围是(  )
A、[-1,2]
B、[0,2]
C、[1,+∞)
D、[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

有一个集合A,若a∈A,则
1+a
1-a
∈A,若
1
3
∈A,求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案