精英家教网 > 高中数学 > 题目详情
曲线
x=-1+cosθ
y=2+sinθ
(θ为参数)的对称中心(  )
A、在直线y=2x上
B、在直线y=-2x上
C、在直线y=x-1上
D、在直线y=x+1上
考点:圆的参数方程
专题:选作题,坐标系和参数方程
分析:曲线
x=-1+cosθ
y=2+sinθ
(θ为参数)表示圆,对称中心为圆心,可得结论.
解答: 解:曲线
x=-1+cosθ
y=2+sinθ
(θ为参数)表示圆,圆心为(-1,2),在直线y=-2x上,
故选:B.
点评:本题考查圆的参数方程,考查圆的对称性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.
(Ⅰ)求证:C1M∥平面A1ADD1
(Ⅱ)若CD1垂直于平面ABCD且CD1=
3
,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合{a,b,c}={0,1,2},且下列三个关系:①?a≠2;②?b=2;③?c≠0有且只有一个正确,则100a+10b+c等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x+1-y)6的展开式中含x2y3项的系数为a,则a=
 
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
9
+
y2
4
=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知六张卡片中,三张红色,三张黑色,它们分别标有数字2,3,4,打乱后分给甲,乙,丙三人,每人两张,若两张卡片所标数字相同称为“一对”卡片,则三人中至少有一人拿到“一对”卡片的分法数为(  )
A、18B、24C、42D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组函数y=f(x)与y=g(x)在交点处有共同切线的是(  )
①f(x)=x2-1,g(x)=lnx
②f(x)=3x2+1,g(x)=x3+3x
③f(x)=(x+1)2,g(x)=ex
④f(x)=
x
,g(x)=
e
2
lnx.
A、①②B、②④C、②③D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:x2+2y2=4.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.
(Ⅰ)求a;
(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.

查看答案和解析>>

同步练习册答案