精英家教网 > 高中数学 > 题目详情
13.已知曲线y=$\frac{{x}^{2}}{4}$-3lnx的一条切线的斜率为-$\frac{1}{2}$,则切点的横坐标为2.

分析 求出导数,设出切点,可得切线的斜率,解方程可得切点的横坐标.

解答 解:设切点为(m,n),(m>0),
y=$\frac{{x}^{2}}{4}$-3lnx的导数为y′=$\frac{1}{2}$x-$\frac{3}{x}$,
可得切线的斜率为$\frac{1}{2}$m-$\frac{3}{m}$=-$\frac{1}{2}$,
解方程可得,m=2.
故答案为:2.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,正确求导是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设x,y满足约束条件$\left\{{\begin{array}{l}{1≤x+y≤3,\;\;}\\{-1≤x-y≤0}\end{array}}\right.$且z=2x-y+a(a为常数)的最大值为2,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定义在R上的二次函数f(x)为偶函数,且满足f(1)=6,f(3)=2.
(1)求f(x)的解析式;
(2)若f(x)在区间[a,b]上值域为[2a,2b],试求所有符合题意的[a,b].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.2016年2月,为保障春节期间的食品安全,某市质量监督局对超市进行食品检查,如图所示是某品牌食品中微量元素含量数据的茎叶图,已知该组数据的平均数为11.5,则$\frac{4}{a}+\frac{1}{b}$的最小值为(  )
A.9B.$\frac{9}{2}$C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=2,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|$\frac{1}{2}$<x<3},B={x|(x+1)(x-2)<0},则A∩B=(  )
A.{x|$\frac{1}{2}$<x<2}B.{x|-1<x<3}C.{x|$\frac{1}{2}$<x<1}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$sin(ωx+φ)(ω>0,0<φ<π)为偶函数,点P,Q分别为函数y=f(x)图象上相邻的最高点和最低点,且|$\overrightarrow{PQ}$|=$\sqrt{2}$.
(1)求函数f(x)的解析式;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,已知a=1,b=$\sqrt{2}$,f($\frac{A}{π}$)=$\frac{\sqrt{3}}{4}$,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在正方体ABCD-A1B1C1D1中,M、N分别是AB、BB1的中点,则异面直线MN与BC1所成角的大小是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知i是虚数单位,m,n∈R,且m+2i=2-ni,则$\frac{m+ni}{m-ni}$的共轭复数为i.

查看答案和解析>>

同步练习册答案