精英家教网 > 高中数学 > 题目详情
17.如图,已知A是△BCD所在平面外一点,∠ABD=∠ACD=90°,AB=AC,E是BC的中点,求证:AD⊥BC.

分析 由已知证明Rt△ABD≌Rt△ACD,得到BD=CD,再由E为BC的中点,可得BC⊥AE,BC⊥ED,由线面垂直的判断得BC⊥平面AED,进而得到AD⊥BC.

解答 证明:如图,
在Rt△ABD与Rt△ACD中,
∵AB=AC,AD=AD,∴Rt△ABD≌Rt△ACD,
∴BD=CD,又E为BC的中点,∴BC⊥AE,BC⊥ED,
又AE∩ED=E,
∴BC⊥平面AED,则AD⊥BC.

点评 本题考查直线与平面垂直的判断和性质,考查空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,b=5,B=$\frac{π}{4}$,sinA=$\frac{2\sqrt{5}}{5}$,则a的值是(  )
A.10$\sqrt{2}$B.2$\sqrt{10}$C.$\sqrt{10}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知cos(θ+$\frac{π}{4}$)=-$\frac{\sqrt{10}}{10}$,θ∈(0,$\frac{π}{2}$),则cosθ=$\frac{\sqrt{5}}{5}$; sin(2θ-$\frac{π}{3}$)=$\frac{4+3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{15}}{4}$,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且PF1F2的周长是8+2$\sqrt{15}$.
(1)求椭圆C的方程;
(2)是否存在斜率为1的直线L与椭圆C交于A,B两点,使得以AB为直径圆过原点,若存在写出直线方程;
(3)设圆T:(x-t)2+y2=$\frac{4}{9}$,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在x轴上移动且t∈(1,3)时,求EF的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出以下四个命题:
①若集合A={x,y},B={0,x2},A=B.则x=1,y=0;
②若函数f(x)的定义域为(-1,1),则函数f(2x+1)的定义域为(-1,0);
③f(x)=$\frac{|x|}{x}$与g(x)=$[\begin{array}{l}{1(x≥0)}\\{-1(x<0)}\end{array}]$表示同一函数.
④若f(x+y)=f(x)f(y),且f(1)=2,$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$=2016
其中正确的命题有①②④(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.画出函数y=x2-4|x|+3的图象,若该图象与y=b有4个交点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解不等式:ax2+(a+1)x+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知函数f(x)的定义域为(-1,2],求函数f(x2-1)的定义域;
(2)已知函数f(3x-4)的定义域为[0,4),求函数f(1-2x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设随机变量ξ~B(2,p),η~B(3,p),若P(ξ≥1)=$\frac{5}{9}$,则P(η≥2)的值为(  )
A.$\frac{20}{27}$B.$\frac{8}{27}$C.$\frac{7}{27}$D.$\frac{1}{27}$

查看答案和解析>>

同步练习册答案