精英家教网 > 高中数学 > 题目详情
20.已知$|{\overrightarrow a}|=3,\overrightarrow c=(1,2,0),(\overrightarrow a-\overrightarrow c)•\overrightarrow a=4$,则$cos\left?{\overrightarrow a,\overrightarrow c}\right>$=(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{5}}}{3}$

分析 利用两个向量的数量积公式,求得$cos\left?{\overrightarrow a,\overrightarrow c}\right>$的值.

解答 解:∵已知$|{\overrightarrow a}|=3,\overrightarrow c=(1,2,0),(\overrightarrow a-\overrightarrow c)•\overrightarrow a=4$,∴${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{c}$=9-$\overrightarrow{a}•\overrightarrow{c}$=4,
∴$\overrightarrow{a}•\overrightarrow{c}$=5,则$cos\left?{\overrightarrow a,\overrightarrow c}\right>$=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}|•|\overrightarrow{c}|}$=$\frac{5}{3•\sqrt{1+4+0}}$=$\frac{\sqrt{5}}{3}$,
故选:D.

点评 本题主要考查两个向量的数量积公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C所对的边为a、b、c,且满足cos2A-cos2B=2cos(A-$\frac{π}{6}$)cos(A+$\frac{π}{6}$).
(Ⅰ)求角B的值;
(Ⅱ)若b=$\sqrt{3}$≤a,求2a-c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin2x+2$\sqrt{3}sinxcosx+3{cos^2}$x-2,x∈R,求:
(1)函数f(x)的最小正周期和单调增区间;
(2)函数f(x)在区间$[-\frac{π}{6},\frac{π}{3}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln x,g(x)=$\frac{1}{2}$ax+b.
(1)若曲线f(x)与曲线g(x)在它们的公共点P(1,f(1))处具有公共切线,求g(x)的表达式;
(2)若φ(x)=$\frac{m(x-1)}{x+1}$-f(x)在[1,+∞)上是减函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}是各项均为正数的等比数列,其前n项和为Sn,a1+a2=2,a5+a6=8,则S10=(  )
A.16B.32C.40D.62

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$tan({\frac{π}{7}+α})=5$,则$tan({\frac{6π}{7}-α})$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知p:?a∈R,ea≥a+1,q:?α,β∈R,sin(α+β)=sinα+sinβ,则下列命题为真命题的是(  )
A.p∧(¬q)B.(¬p)∧qC.p∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某班某学习小组共7名同学站在一排照相,要求同学甲和乙必须相邻,同学丙和丁不能相邻,则不同的站法共有(  )种.
A.$A_5^5A_6^2$B.$A_2^2A_4^4A_4^2$C.$A_2^2A_5^5A_6^2$D.$A_2^2A_4^4A_5^2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知扇形的周长为20cm,当它的面积最大时,它的圆心角的弧度数为2.

查看答案和解析>>

同步练习册答案