精英家教网 > 高中数学 > 题目详情
15.sinα+cosα=$\frac{{\sqrt{3}}}{3}$,则sin2α=(  )
A.-$\frac{2}{3}$B.-$\frac{2}{9}$C.$\frac{2}{9}$D.$\frac{2}{3}$

分析 由条件利用同角三角函数的基本关系,二倍角的正弦公式求得sin2α的值.

解答 解:∵sinα+cosα=$\frac{{\sqrt{3}}}{3}$,则1+2sinαcosα=1+sin2α=$\frac{1}{3}$,
∴sin2α=-$\frac{2}{3}$,
故选:A.

点评 本题主要考查同角三角函数的基本关系,二倍角的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的偶函数,f(x)在x>0时,f(x)=ex+lnx,若f(a)<f(a-1),则a的取值范围是(  )
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若$\overrightarrow a$=(0,3),$\overrightarrow b$=($\sqrt{3}$,1),$\overrightarrow{c}$=3$\overrightarrow{a}$+5$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-5$\overrightarrow{b}$,
(1)试问m为何值时,$\overrightarrow c$与$\overrightarrow{d}$互相平行;
(2)试问m为何值时,$\overrightarrow c$与$\overrightarrow{d}$互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=f(x)在区间[-2,2]上的图象是连续的,且方程f(x)=0在(-2,2)上至少有一个实根,则f(-2)•f(2)的值(  )
A.大于0B.小于0C.等于0D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等比数列{an}中,a3,a9是方程3x2-11x+9=0的两个根,则a5a6a7=(  )
A.3$\sqrt{3}$B.$\frac{11}{2}$C.±3$\sqrt{3}$D.以上皆非

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的通项公式an=n2-2n-8(n∈N*),则a4等于(  )
A.1B.2C.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设(1-x)7=a0+a1x+a2x2+…+a7x7,则a0,a1,a2,…,a7中最大的数是a4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x,y满足约束条件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,则z=3x+y的最大值为(  )
A.2$\sqrt{10}$B.$\sqrt{5}$C.2D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.先后掷两次正方体骰子(骰子的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为m,n,则mn是偶数的概率为$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案