精英家教网 > 高中数学 > 题目详情
10.定义:已知I时函数f(x)和g(x)的公共定义域,若存在开区间D⊆I,使函数f(x)和g(x)在D上都是单调递增函数或者是单调递减函数,并且他们的导函数f′(x)和g′(x)在D上也具有相同的单调性,则函数f(x)和g(x)在I上互为“保势函数”.若函数f(x)=ax+lnx和g(x)=3x-eax在R+上互为“保势函数”,则实数a的取值范围是(0,3].

分析 若函数f(x)=ax+lnx和g(x)=3x-eax在R+上互为“保势函数”,则f′(x)和g′(x)在R+上也具有相同的单调性,函数f(x)和g(x)在R+上单调性一致,进而可得实数a的取值范围.

解答 解:若函数f(x)=ax+lnx和g(x)=3x-eax在R+上互为“保势函数”,
则f′(x)和g′(x)在R+上也具有相同的单调性,
函数f(x)和g(x)在R+上单调性一致,
∵f′(x)=a+$\frac{1}{x}$在R+上为减函数,
∴g′(x)=3-aeax在R+上为减函数,
故a>0,
则f′(x)=a+$\frac{1}{x}$>0在R+上恒成立,即f(x)在R+上单调递增,
则g(x)在R+上也单调递增,
故g′(x)=3-aeax≥0在R+上恒成立,
又由g″(x)=-a2eax<0在R+上恒成立,
故g′(0)=3-a≥0,
解得:a≤3,
综上实数a的取值范围是(0,3],
故答案为:(0,3]

点评 本题考查的知识点是函数与方程的综合运用,正确理解互为“保势函数”的概念是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{2}$=0相切.
(1)求椭圆E的方程;
(2)已知直线l过点M(-$\frac{1}{2}$,0)且与开口向上,顶点在原点的抛物线C切于第二象限的一点N,直线l与椭圆E交于A、B两点,与y轴交于D点,若$\overrightarrow{AD}$=λ$\overrightarrow{AN}$,$\overrightarrow{BD}$=μ$\overrightarrow{BN}$,且λ+μ=-4,求抛物线C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x、y满足约束条件$\left\{\begin{array}{l}x≤a\\ x-2y+3≤0\\ 2x-y+3≥0\end{array}\right.$,且z=x+2y的最大值为11,则a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设b,c表示两条直线,α,β表示两个平面,则下列命题正确的是(  )
A.若b?α,c∥α,则c∥bB.若c∥α,c⊥β,则α⊥βC.若c∥α,α⊥β,则c⊥βD.若b?α,b∥c,则c∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知各项均为正数的数列{an}前n项和为Sn,首项为a1,且$\frac{1}{2}$,an,Sn是等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若an2=($\frac{1}{2}$)${\;}^{{b}_{n}}$,设cn=$\frac{{b}_{n}}{{a}_{n}}$+(-1)nan,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-$\frac{1}{2}{x^2}$-ax+b在x=0处的切线方程为y=-2x+4.
(1)求函数f(x)的解析式.
(2)证明:?x1,x2∈R且x1≠x2,恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>-2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.y=2sinx-cosx的最大值为(  )
A.1B.3C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对每个正整数n,点Pn位于函数y=3x+$\frac{13}{4}$的图象上,且Pn的横坐标构成以-$\frac{5}{2}$为首项,-1为公差的等差数列{xn}.
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,第n条抛物线Cn的顶点为Pn且过点Dn(0,n2+1),记过点Dn且与抛物线Cn相切的直线
的斜率为kn,求证:$\frac{1}{k{{{\;}_{1}k}_{2}}_{\;}}$+$\frac{1}{{k}_{2}{k}_{3}}$+…+$\frac{1}{{{k}_{n-1}}_{\;}{k}_{n}}$<$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图(1),等腰梯形OABC的上、下底边长分别为1、3,底角为∠COA=60°.记该梯形内部位于直线x=t(t>0)左侧部分的面积为f(t).试求f(t)的解析式,并在如图(2)给出的坐标系中画出函数y=f(t)的图象.

查看答案和解析>>

同步练习册答案