精英家教网 > 高中数学 > 题目详情
1.已知p:?x∈R,mex+1≤0,q:?x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是[1,+∞).

分析 由命题p为真时求出m的取值范围,由命题q为真时求出m的取值范围;
再根据p∨q为假命题时p与q都是假命题,从而求出m的取值范围.

解答 解:由命题p:?x∈R,mex+1≤0,可得m<0;
由命题q:?x∈R,x2-2mx+1>0,可得△=4m2-4<0,解得-1<m<1;
因为p∨q为假命题,所以p与q都是假命题;
若p是假命题,则有m≥0;
若q是假命题,则有m≤-1或m≥1,
所以符合条件的实数m的取值范围为m≥1.
故答案为:[1,+∞).

点评 本题考查了复合命题的真假判断问题,也考查了特称命题与全称命题的应用问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)已知复数z=1+i,ω=$\frac{{z}^{2}-3z+6}{z+1}$(i为虚数单位),设复数ω在复平面内对应的向量为$\overrightarrow{OA}$,把坐标为(0,$\sqrt{2}$)对应的向量$\overrightarrow{OB}$按照逆时针方向旋转角θ到向量$\overrightarrow{OA}$的位置,求θ的最小值;
(2)若($\frac{1}{\root{3}{x}}$+2$\sqrt{x}$)n的二项展开式中,各项的二项式系数之和是1024,求系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某厂生产的某种零件的尺寸Z大致服从正态分布N(100,52),且规定尺寸Z∉(μ-3σ,μ+3σ)为次品,其余的为正品,生产线上的打包机自动把每4件零件打包成1箱,然后进入销售环节,若每销售一件正品可获利50元,每销售一件次品亏损100元,现从A生产线生产的零件中抽样25箱做质量分析,作出的频率分布直方图如下:
(1)估计A生产线生产的零件的次品率及零件的平均尺寸;
(2)从A生产线上随机取一箱零件,求这箱零件销售后的期望利润及不亏损的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知i是虚数单位,复数z满足zi=1+i,则z=1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=3sin(ωx+φ)(ω>0,0<φ<π),直线x=$\frac{π}{4}$和x=$\frac{5π}{4}$是f(x)相邻的两条对称轴,则f(x)的解析式为(  )
A.f(x)=3sin(x+$\frac{π}{4}$)B.f(x)=3sin(2x$+\frac{π}{4}$)C.f(x)=3sin(x$+\frac{3π}{4}$)D.f(x)=3sin(2x$+\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将编号为1,2,3,4的四个档案袋放入3个不同档案盒中,每个档案盒不空且恰好有1个档案盒放有2个连号档案袋的所有不同放法种数有(  )
A.6B.18C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin(2x+$\frac{π}{3}$)+cos(2x-$\frac{π}{6}$),x∈R.
(1)求f(x)的最小正周期;
(2)将y=f(x)图象上所有点向左平行移动$\frac{π}{6}$个单位长度,得到y=g(x)的图象,求函数y=g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$都为单位向量,且$\overrightarrow{a}$⊥(2$\overrightarrow{b}$-$\overrightarrow{a}$),则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{8}{3}$B.3C.$\frac{10}{3}$D.$\frac{11}{3}$

查看答案和解析>>

同步练习册答案