精英家教网 > 高中数学 > 题目详情
设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若
A1A3
A1A2
(λ∈R),
A1A4
A1A2
(μ∈R),且
1
λ
+
1
μ
=2,则称A3,A4调和分割A1,A2,已知平面上的点C,D调和分割点A,B,则下面说法正确的是(  )
A、C可能是线段AB的中点
B、D可能是线段AB的中点
C、C、D可能同时在线段AB上
D、C、D不可能同时在线段AB的延长线上
考点:向量加减混合运算及其几何意义
专题:新定义,平面向量及应用
分析:由题意可设A(0,0)、B(1,0)、C(c,0)、D(d,0),结合条件
1
c
+
1
d
=2,
根据题意考查方程
1
c
+
1
d
=2的解的情况,用排除法选出正确的答案即可.
解答: 解:由已知不妨设A(0,0)、B(1,0)、C(c,0)、D(d,0),
则(c,0)=λ(1,0),(d,0)=μ(1,0),
∴λ=c,μ=d;
代入
1
λ
+
1
μ
=2,得
1
c
+
1
d
=2;(*)
若C是线段AB的中点,则c=
1
2
,代入(*)得,d不存在,
∴C不可能是线段AB的中点,A错误;同理B错误;
若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(*)得,c=d=1,
此时C和D点重合,与已知矛盾,∴C错误.
若C,D同时在线段AB的延长线上时,则λ>1.μ>1,
1
λ
+
1
μ
<2,这与
1
λ
+
1
μ
=2矛盾;
∴C、D不可能同时在线段AB的延长线上,D正确.
故选:D.
点评:本题考查了新定义应用问题,解题时应正确理解新定义的含义,是易错题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,A,B分别为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点,以AB为一边做矩形ABCD,且AD=
3
b.P为椭圆在第一象限上的任意一点,连接PD,PC,分别与x轴交于点M,N,则
|MN|2
|AM||BN|
=(  )
A、1
B、
4
3
C、
5
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=3ax+1-2a在(-1,1)上存在x0使f(x0)=0,则实数a的取值范围是(  )
A、a<
1
5
B、a>
1
5
C、a>
1
5
或a<-1
D、a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足①f(x)+f(2-x)=0,②f(x)-f(-2-x)=0,③在[-1,1]上表达式为,f(x)=
1-x2
x∈[-1,0]
1-x;x∈(0,1]
则函数f(x)与函数g(x)=
2x,x≤0
log
1
2
x
,x>0
的图象在区间[-3,3]上的交点个数为(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sinωx(ω>0)在区间[-
π
3
π
4
]上的最大值是3,则ω的最小值为(  )
A、
2
3
B、
3
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+m+3)(x+m+5),g(x)=3x-3,且同时满足条件:①?x∈R,f(x)<0或g(x)<0; ②?x∈(-∞,-2),f(x)•g(x)<0,则m的取值范围(  )
A、(-∞,-2)
B、(-4,-3)
C、(-3,0)
D、(-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

某初级中学共有学生2000名,各年级男、女生人数如表:
初一年级初二年级初三年级
女生373xy
男生377370z
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
(1)求x的值;
(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c,且f(1)=0
(1)若函数f(x)是偶函数,求f(x)的解析式;
(2)在(1)的条件下,求函数f(x)在[-1,3]上的最大、最小值;
(3)要使函数f(x)在[-1,3]上是单调函数,求b的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x2+2y2=4x,求z=x2+y2的最大值及最小值.

查看答案和解析>>

同步练习册答案