【题目】如图①,在边长为4的正方形ABCD中,E,F分别是边AB,BC上的点(端点除外),将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′(如图②).
(1)求证:A′D⊥EF;
(2)当点E,F分别为AB,BC的中点时,求直线A′E与直线BD所成角的余弦值.
![]()
科目:高中数学 来源: 题型:
【题目】已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9.
(1)求证:无论m为何值,直线l总过定点A,并说明直线l与圆C总相交.
(2)m为何值时,直线l被圆C所截得的弦长最小?请求出该最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】写出下面两个的相关命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)命题:若
,则
.
逆命题:_______________________________________________________(________)
逆否命题:_____________________________________________________(________)
(2)命题:设
是实数,如果
,那么
有实数根。
否命题:_______________________________________________________(________)
逆否命题:_____________________________________________________(________)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形
是正方形,
平面
,
,
,
,
,
分别为
,
,
的中点.
![]()
(1)求证:
平面
;
(2)求平面
与平面
所成锐二面角的大小;
(3)在线段
上是否存在一点
,使直线
与直线
所成的角为
?若存在,求出线段
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系
中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,
(1)求该椭圆的标准方程;
(2)(文)若
是椭圆上的动点,过P作垂直于x轴的垂线,垂足为M,延长MP至N,使得P恰好为MN中点,求点N的轨迹方程;
(理)若已知点
,
是椭圆上的动点,求线段
中点
的轨迹方程;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某学校拟建一块五边形区域的“读书角”,三角形区域ABE为书籍摆放区,沿着AB、AE处摆放折线形书架(书架宽度不计),四边形区域为BCDE为阅读区,若∠BAE=60°,∠BCD=∠CDE=120°,DE=3BC=3CD=
m.
![]()
(1)求两区域边界BE的长度;
(2)若区域ABE为锐角三角形,求书架总长度AB+AE的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com