分析 由a>0,结合y=f(x)的图象可得f(x)在[1,2]的最小值可以是f(1),或f(2),f(a).分别计算求得a,将绝对值去掉,运用二次函数的对称轴和区间的关系,结合单调性,即可判断a的值.
解答 解:由a>0,结合y=f(x)的图象可得f(x)在[1,2]的最小值
可以是f(1),或f(2),f(a).
由f(a)=0,不成立;
由f(1)=|1-a|=2,解得a=-1(舍去)或a=3,
当a=3时,f(x)=x|x-3|在[1,2],即有:f(x)=x(3-x)在[1,2]递减,
可得f(1)或f(2)取得最小值,且为2;
由f(2)=2|2-a|=2,解得a=1或a=3.
当a=3时,f(x)=x|x-3|在[1,2]即为:f(x)=x(3-x)在[1,2]递减,
可得f(1)或f(2)取得最小值,且为2;
当a=1时,f(x)=x|x-1|在[1,2]即为:f(x)=x(x-1),
可得f(x)在[1,2]递增,即有f(1)取得最小值,且为0,不成立.
综上可得a=3.
故答案为:3.
点评 本题考查函数的最值的求法,注意运用分类讨论的思想方法,考查二次函数的最值的求法,注意讨论对称轴和区间的关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (2,4) | B. | (2,-4) | C. | (-4,-2) | D. | (-4,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 逻辑思维能力 语言表达能力 | 一般 | 良好 | 优秀 |
| 一般 | 2 | 2 | m |
| 良好 | 4 | 4 | 1 |
| 优秀 | 1 | m | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com