精英家教网 > 高中数学 > 题目详情
若实数a,b满足ab=1,求a+b的取值范围.
考点:基本不等式
专题:不等式的解法及应用
分析:由ab=1,变形为b=
1
a
.可得a+b=a+
1
a
.通过对a分类讨论,利用基本不等式的性质即可得出.
解答: 解:∵ab=1,∴b=
1
a

∴a+b=a+
1
a

当a>0时,a+
1
a
≥2
a•
1
a
=2,当且仅当a=1时取等号.
同理当a<0时,a+
1
a
≤-2,当且仅当a=-1时取等号.
综上可得:a+b的取值范围是(-∞,-2]∪[2,+∞).
点评:本题考查了基本不等式的性质、分类讨论的思想方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点A、B的坐标分别为(0,1),(0,-1),直线AM、BM相交于点M,且它们的斜率之积是常数-
1
m+1
(m≠-1).
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线l:y=kx-
1
3
交曲线C于点P,Q,是否存在m,使得以PQ为直径的圆恒过点A?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙0的直径,点C是⊙0上的点,过点C的直线VC垂直于⊙0所在平面,且AC=
3
VC.
(Ⅰ)求证:平面VAC⊥平面VBC;
(Ⅱ)求直线VA与平面VBC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3×2x,若g(x)=
cxf(x)
2x(x2-1)
,讨论g(x)在(-1,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=|x-3|+|x-4|.
(Ⅰ)解不等式f(x)≤2;
(Ⅱ)若对任意实数x∈[5,9],f(x)≤ax-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨a-1<x<1-a},B={x丨x≤-1,或x≥4},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数是否具有奇偶性(请先写出定义域,再进行判断).
(1)
1
x2+1
,x∈[1,2];
(2)f(x)=(x+1)(x-1);
(3)g(x)=(x+1);
(4)h(x)=x+
3x

(5)k(x)=
1
x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是可导函数,且
lim
△x→0
f(x0-2△x)-f(x0)
△x
=2,则f′(x0)=
 

查看答案和解析>>

同步练习册答案