精英家教网 > 高中数学 > 题目详情
已知三棱柱ABC-A1B1C1的底面为直角三角形,则棱与底面垂直,如图所示,D是棱CC1的中点,且∠ACB=90°,BC=1,AC=
3
,AA1=
6

(Ⅰ)证明:A1D⊥平面AB1C1
(Ⅱ)求二面角B-AB1-C1的余弦值.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定
专题:
分析:(Ⅰ) 由已知,AA1⊥平面ABC,∠ACB=90°,证出B1C1⊥AA1C1C,从而得B1C1⊥A1D;在矩形AA1C1C中,利用△ACC1~△DC1A1,证出A1D⊥AC1,由线面垂直的判定定理即可证明:A1D⊥平面AB1C1
(Ⅱ)在(Ⅰ)的基础上,设垂足(即为A1D与AC1的交点)为H,过A1作AB1的垂线,垂足为G,连GH,由三垂线定理逆定理,可证∠A1GH为二面角A1-AB1-C1的平面角,再解三角形A1GH即可获解.
解答: (Ⅰ)证明:∵∠ACB=90°,∴BC⊥AC.
∵三棱柱ABC-A1B1C1中,CC1⊥平面ABC,
∴BC⊥CC1
∵AC∩CC1=C,
∴BC⊥平面ACC1A1
∵A1D?平面ACC1A1,∴BC⊥A1D,
而BC∥B1C1,则B1C1⊥A1D.
在Rt△ACC1与Rt△DC1A1中,
AC
CC1
=
DC1
AC1
=
2
2
,∴△ACC1~△DC1A1
∴∠AC1C=∠DA1C1
∴∠AC1C+∠C1DA1=90°.即A1D⊥AC1
∵B1C1∩AC1=C1
∴A1D⊥平面AB1C1
(Ⅱ)解:如图,设A1D∩AC1=H,过A1作AB1的垂线,垂足为G,连GH,
∵A1D⊥平面AB1C1,∴AB1⊥A1D,∴AB1⊥平面A1GH,
∴∠A1GH为二面角A1-AB1-C1的平面角.
在Rt△AA1B1中,AA1=
6
,A1B1=2,
∴AB1=
10

∴由等面积,可得A1G=
2
15
5

在Rt△AA1C1中,AA1=
6
,A1C1=
3

∴AC1=3,∴由等面积,可得A1H=
2

∴在Rt△A1GH中,sin∠A1GH=
30
6

∴cos∠A1GH=
6
6

∴二面角B-AB1-C1的余弦值为-
6
6
点评:本题考查二面角的计算,直线和平面垂直的性质、判定,考查学生空间想象能力,计算能力、转化能力.空间问题平面化,是解决空间问题最核心的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在一个120°的二面角的棱上有两个点A、B,AC、BD分别是在这个二面角的两个半平面内且垂直于AB的线段,又AB=4cm,AC=6cm,BD=8cm,则CD的长为(  )
A、2
17
cm
B、
154
cm
C、2
41
cm
D、4
10
cm

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1几何证明选讲
如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5.
(Ⅰ)若sin∠BAD=
3
5
,求CD的长;
(Ⅱ)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
1
2
(1+x)(ax2+bx+c),g(x)=-e -x+
1
2
-|ln(x+1)|+k
(1)若f(x)的图象关于x=-1对称,且f(1)=2,求f(x)的解析式;
(2)对于(1)中的f(x),讨论f(x)与g(x)的图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE,F为PC上一点,且CF=2FP.
(Ⅰ) 求证:PA∥平面BEF;
(Ⅱ)若PE=
3
AE
,求二面角F-BE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E是AB的中点
(Ⅰ)在B1C上是否存在点P,使PB∥平面B1ED,若存在,求出点P的位置,若不存在,请说明理由;
(Ⅱ)求二面角D-B1E-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数字0、1、2、3组成3位数.
(1)不允许数字重复.
    ①可以组成多少三位数?
    ②把①中的三位数按从小到大排序,230是第几个数?
(2)允许数字重复,可以组成多少个能被3整除的三位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,且a1=1,a1+a2+a3=6.
(1)求数列{an}的通项公式及前n项的和Sn
(2)令bn=an2n,求{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-2|+2|x-a|(a∈R).
(Ⅰ)当a=1时,解不等式f(x)>3;
(Ⅱ)不等式f(x)≥1在区间(-∞,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案