精英家教网 > 高中数学 > 题目详情

已知向量,点A、B为函数的相邻两个零点,AB=π.
(1)求的值;
(2)若,求的值;
(3)求在区间上的单调递减区间.

(1);(2);(3).

解析试题分析: (1)由向量的数量积可得:

.
这个函数相邻两个零点间的距离等于半个周期,再利用求周期的公式可得的值.
(2)由(1)得,则.
这里不能展开来求,而应考虑凑角: ,这样再利用差角的正弦公式就可以求出的值;
(3),这是一个三角函数与一个一次函数的差构成的函数,故可通过导数来求它的单调区间.
试题解析:(1)
,            3分
,得,则.                4分
(2)由(1)得,则.
,得,                 6分

.                8分
(3),
,
,                        10分
),
),
,
在区间上的单调递减区间为           12分
考点:1、向量的数量积;2、三角函数的周期;3、三角变换;4、导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,且图象的相邻两条对称轴间的距离为
(1)求的值;
(2)求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数的一段图象如图所示.

(1)求的解析式;
(2)若求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在区间上的函数的图象关于直线对称,当时函数图象如图所示.

(Ⅰ)求函数的表达式;
(Ⅱ)求方程的解;
(Ⅲ)是否存在常数的值,使得上恒成立;若存在,求出 的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中的最小正周期为
(Ⅰ)求的值,并求函数的单调递减区间;
(Ⅱ)在锐角中,分别是角的对边,若的面积为,求的外接圆面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小正周期及单调递减区间;
(2)若在区间上的最大值与最小值的和为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知内角,边.设内角的面积为.
(1)求函数的解析式和定义域;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的最小正周期为,其图像经过点
(1)求的解析式;
(2)若为锐角,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)当时,求的最大值.

查看答案和解析>>

同步练习册答案