精英家教网 > 高中数学 > 题目详情
在直三棱柱ABC-A1B1C1中,AB=BC=CC1=2,AB⊥BC,点M,N分别是CC1,B1C的中点,G是棱AB上的动点.
(Ⅰ)求证:B1C⊥平面BNG;
(Ⅱ)若G点是AB的中点,求证:CG∥平面AB1M1
(Ⅲ)求二面角M-AB1-B的余弦值.
考点:用空间向量求平面间的夹角,直线与平面平行的判定,直线与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)由直三棱柱的性质结合AB⊥BC,得AB⊥平面B1BCC1,从而B1C⊥GB,在等腰△BB1C中,利用中线BN⊥B1C,根据线面垂直的判定定理,得到B1C⊥平面BNG.
(Ⅱ)连接AB1,取AB1的中点H,连接HG、HM、GC,用三角形中位线定理,得到GH∥BB1且GH=
1
2
BB1,在正方形B1BCC1中证出MC∥BB1且MC=
1
2
BB1,所以GH与MC平行且相等,得到四边形HGCM为平行四边形,GC∥HM,最后结合线面平行的判定定理,得到CG∥平面AB1M.
(Ⅲ)建立空间直角坐标系,利用向量法能求出二面角M-AB1-B的余弦值.
解答: (Ⅰ)证明:∵在直三棱柱ABC-A1B1C1中,BC=CC1=BB1,点N是B1C的中点,
∴BN⊥B1C,∵AB⊥BC,AB⊥BB1,BB1∩BC=B
∴AB⊥平面B1BCC1
∵B1C?平面B1BCC1
∴B1C⊥AB,即B1C⊥GB,
又∵BN∩BG=B,BN、BG?平面BNG
∴B1C⊥平面BNG.
(Ⅱ)证明:连接AB1,取AB1的中点H,连接HG、HM、GC,
则HG为△AB1B的中位线
∴GH∥BB1,GH=
1
2
BB1
∵由已知条件,B1BCC1为正方形
∴CC1∥BB1,CC1=BB1
∵M为CC1的中点,
∴CM=
1
2
CC1,∴MC∥GH,且MC=GH,
∴四边形HGCM为平行四边形
∴GC∥HM,
又∵GC?平面AB1M,HM?平面AB1M,
∴CG∥平面AB1M.
(Ⅲ)解:以B为原点,BB1为x轴,BC为y轴,BA为z轴,
建立空间直角坐标系,
由题意知M(1,2,0),A(0,0,2),
B1(2,0,0),B(0,0,0),
AB1
=(2,0,-2)
AM
=(1,2,-2),
设平面AB1M的法向量
n
=(x,y,z),
n
AB1
=0
n
AM
=0
,∴
2x-2z=0
x+2y-2z=0

取x=1,得
n
=(1,
1
2
,1),
又平面AB1B的法向量
m
=(0,1,0),
∴cos<
n
m
>=
1
2
1+1+
1
4
=
1
3

∴二面角M-AB1-B的余弦值为
1
3
点评:本题给出一个侧面是正方形的直三棱柱,求证线面垂直并探索线面平行的存在性,考查了线面垂直的判定与性质、线面平行的判定定理等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn=pn2-2n+q(p,q∈R,n∈N*).
(1)求q的值;
(2)若a1与a5的等差中项为18,bn满足an=2log2bn,求数列的{bn}前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

将同样大小的颜色为红、黄、蓝、白的4个小球放入编号为1、2、3、4、5的五个格子中,每个格子的容量均大于4个,请计算:
(1)恰有2个格子为空格的概率;
(2)放入小球最多的格子中球的数量的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c.若a=c=
6
+
2
且∠A=75°,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinx•cosx+2cos2x,x∈R.
(1)求f(x)的最小正周期;
(2)已知f(
α
2
)=
1
3
,α∈[0,π],求cos(α+
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a||x-1|恒成立,则实数x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2+2ax-3a+4>0在x∈[1,2]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市对该市小微企业资金短缺情况统计如下:
小微企业短缺资金金额(万元)[0,20)[20,40)[40,60)[60,80)[80,100)
频率0.050.10.350.30,2
(1)试根据上表估计该市小微企业短缺资金金额的平均值;
(2)某银行为更好地支持小微企业健康发展,从其第一批注资的A行业的4家小微企业和B行业的3家小微企业中随机的选取4家小微企业进行跟踪调研,设选取的4家小微企业注资的B行业的个数为随机变量X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx+ax2,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线经过坐标原点,求a的值;
(2)若函数y=f(x)在区间(0,1)内不单调,求a的取值范围.

查看答案和解析>>

同步练习册答案