精英家教网 > 高中数学 > 题目详情
11.某射手每次射击击中目标的概率是$\frac{4}{5}$,求这名射手在10次射击中,
(1)恰有8次击中目标的概率;
(2)至少有8次击中目标的概率.

分析 (1)由条件利用n次独立重复实验中恰好发生k次的概率计算公式,求得恰有8次击中目标的概率.
(2)由条件利用n次独立重复实验中恰好发生k次的概率计算公式,求得恰有8次击中目标的概率、恰有9次击中目标的概率、恰有10次击中目标的概率,再把这3个概率相加,即得所求.

解答 解:(1)∵某射手每次射击击中目标的概率是$\frac{4}{5}$,则这名射手在10次射击中恰有8次击中目标的概率为${C}_{10}^{8}$•${(\frac{4}{5})}^{8}$•${(\frac{1}{5})}^{2}$.
(2)至少有8次击中目标的概率为${C}_{10}^{8}$•${(\frac{4}{5})}^{8}$•${(\frac{1}{5})}^{2}$+${C}_{10}^{9}$•${(\frac{4}{5})}^{9}$•$\frac{1}{5}$+${(\frac{4}{5})}^{10}$.

点评 本题主要考查n次独立重复实验中恰好发生k次的概率,体现了转化、分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.从装有编号为1,2,3,…,n+1的n+1个球的口袋中取出m个球(0<m≤n,m,n∈N),共有Cn+1m种取法.在这Cn+1m种取法中,不取1号球有C10Cnm种取法;必取1号球有C11Cnm-1种取法.所以C10Cnm+C11Cnm-1=Cn+1m,即Cnm+Cnm-1=Cn+1m成立.试根据上述思想,则有当1≤k≤m≤n,k,m,n∈N时,Cnm+Ck1Cnm-1+Ck2Cnm-2+…+CkkCnm-k=$C_{n+k}^m$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数i2015(i为虚数单位)的共轭复数是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(0,2)时,f(x)=2x,则f(2015)+f(2012)的值为(  )
A.-2B.-1C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点(1,-2)和$({\frac{{\sqrt{3}}}{3},0})$在直线l:ax-y-1=0(a≠0)的两侧,则直线l倾斜角的取值范围是(  )
A.$({\frac{π}{4},\frac{π}{3}})$B.$({\frac{2π}{3},\frac{5π}{6}})$C.$({0,\frac{π}{3}})∪({\frac{3π}{4},π})$D.$({\frac{π}{3},\frac{2π}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB.
(1)点P为棱CC1上一动点,求证:AP⊥B1D1
(2)求AD1与平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等比数列{an}中,若a3=4,a7=16,a5的值为(  )
A.±8B.4C.8D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知圆O1,圆O2均与x轴相切,且圆O1,O2都在射线y=mx(m>0,x>0)上.
(1)若O1的坐标为(3,1),过直线x-y+2=0上的一点P作圆O1的切线,切点分别为A,B两点,求PA长度的最小值;
(2)若圆O1,圆O2的半径之积为2,Q(2,2)是两圆的一个公共点,求两圆的另一条公切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,AB为圆O的直径,BC,CD为圆O的切线,B,D为切点.
(Ⅰ)求证:AB∥OC;
(Ⅱ)若圆O的半径为2,求AD•OC的值.

查看答案和解析>>

同步练习册答案