精英家教网 > 高中数学 > 题目详情
18.已知在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$.
(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.

分析 (1)由a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$.两边取倒数可得:$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=2,利用等差数列的定义即可证明;
(2)由(1)可得:$\frac{1}{{a}_{n}}$=2n-1,可得:anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂项求和”与“放缩法”即可得出.

解答 (1)证明:∵a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$.
两边取倒数可得:$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=2,
∴数列{$\frac{1}{{a}_{n}}$}是等差数列,首项为1,公差为2;
(2)解:由(1)可得:$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,
∴an=$\frac{1}{2n-1}$.
∴anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Sn=a1a2+a2a3+…+anan+1=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$=$\frac{1}{2}(1-\frac{1}{2n+1})$,
∴2Sn=1-$\frac{1}{2n+1}$<1,
即2Sn<1.

点评 本题考查了等差数列的定义、“裂项求和”与“放缩法”,考查了推力能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在几何体ABCDN中,CD⊥平面ABC,DC∥AN,CD=2AN=4,又AB=AC=BC=2,点P是BD上的动点(与B、D两点不重合).
(1)若P为BD的中点,求证:AP⊥BC;
(2)若二面角B-PC-A的余弦值为$\frac{2\sqrt{19}}{19}$,求直线PN与平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数ξ的概率分布列.
(1)每次取出的产品不再放回去;
(2)每次取出的产品仍放回去;
(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0;
③“x≠1或y≠2”是“x+y≠3”的必要不充分条件;
④两个随机变量的线性相关性越强,则相关系数就越接近于1.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,PD⊥平面ABCD,AD⊥CD,AD∥BC,PD:DC:BC=1:1:$\sqrt{2}$.
(Ⅰ)求PB与平面PDC所成角的大小;
(Ⅱ)求二面角D-PB-C的正切值;
(Ⅲ)若AD=$\frac{1}{2}$BC,求证:平面PAB⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在离心率为e的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,右焦点F(c,0),A($\frac{{a}^{2}}{c}$,0),过F的直线交椭圆于M、N两点,过A与直线MN平行的直线交椭圆于B、C两点,求证:|$\overrightarrow{FM}$|•|$\overrightarrow{FN}$|=e2|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在△ABC中,AB=2,∠ABC=θ,AD是边BC上的高,当θ∈[$\frac{π}{6}$,$\frac{π}{3}$]时,$\overrightarrow{AD}$•$\overrightarrow{AC}$的最大值与最小值之差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点,若它停在偶数点上,则下一次沿逆时针方向跳一个点,若青蛙从5这个点开始跳,则经2015次跳后停在的点对应的数为3.

查看答案和解析>>

同步练习册答案