精英家教网 > 高中数学 > 题目详情
13.设相互独立的X和Y具有同一分布律,且P(X=0)=P(X=1)=$\frac{1}{2}$,则随机变量Z=min{X,Y}的分布列为
Z01
P0.750.25

分析 确定类型,z=0时,x=0y=0;x=0,y=1;x=1,y=0;z=1时,x=1,y=1,利用独立事件的概率求解.

解答 解:∵相互独立的X和Y具有同一分布律,且P(X=0)=P(X=1)=$\frac{1}{2}$,
∴当x=0,y=0时,z=0,p=0.5×0.5=0.25,
当x=0,y=1时,z=0,p=0.5×0.5=0.25
当x=1,y=0时,z=0,p=0.5×0.5=0.25,
当x=1,y=1时z=1,p=0.5×0.5=0.25
所以,z=0时,p=0.75,
z=1时,p=0.25.
故答案为:0.75;0.25.

点评 本题考查了学生阅读分析问题的能力,理解题意是关键,确定概率问题,分类讨论分解构成,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设f(x)=6cos2x-$\sqrt{3}$sin2x
(1)求f(x)的最大值及最小正周期
(2)若α满足f($\frac{α}{2}$)=3-$\frac{2\sqrt{3}}{3}$,求sin(2$α-\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a>0且a≠1,求函数f(x)=$\frac{1}{2}$(ax+${a}^{\frac{x}{2}}$)-a${\;}^{\frac{x+1}{2}}$(x∈[0,+∞))的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求满足下列条件的点的坐标;
(1)与点(-2,1)关于x轴对称;
(2)与点(-1,-3)关于y轴对称;
(3)与点(2,-1)关于坐标原点对称;
(4)与点(-1,0)关于y轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.现有4名同学乘电梯到6至10楼去听课外知识讲座,设每名同学选择其中一个楼层下电梯的可能性相同,则乘电梯的种数是(  )
A.54B.45C.$\frac{5×4×3×2}{2}$D.5×4×3×2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知α为锐角,向量$\overrightarrow{a}$=(cos(α-$\frac{π}{6}$),sin(α-$\frac{π}{6}$)),$\overrightarrow{b}$=($\sqrt{3}$,-1),且$\overrightarrow{a}•\overrightarrow{b}$=$\frac{2}{7}$.
(1)若β为锐角,且cos(α+β)=-$\frac{11}{14}$,求角β;
(2)求$\frac{sin2α-2\sqrt{3}co{s}^{2}α}{1+cos2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆G经过点A(-5,0),B(1,0),C(-3,-2$\sqrt{2}$)三点.
(1)求圆G的方程;
(2)设D是圆G上异于A,B的任意一点,直线AD,BD交直线l:x=5于A′,B′两点,求证:以线段A′B′为直径的圆必经过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合M={x,xy,lg(xy)},N={0,|x|,y},并且M=N,求值:(x+$\frac{1}{y}$)+(x2+$\frac{1}{{y}^{2}}$)+(x3+$\frac{1}{{y}^{3}}$)+…+(x2004+$\frac{1}{{y}^{2004}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.现有5名同学参加3个不同的比赛项目,每名同学任选一项参加比赛,若ξ表示没有任何同学选报的项目的个数,则P(ξ=1)=$\frac{18}{25}$.

查看答案和解析>>

同步练习册答案